日期:2022-01-18
这是圆柱的体积教案设计,是优秀的数学教案文章,供老师家长们参考学习。
各位老师:
大家好,今天我讲课的题目是《圆柱的体积》,是北师大版第一单元第三课时的内容。圆柱的体积是本单元的教学重点,本节课的我预设教学目标有三点:1.了解圆柱体积(容积)的含义,进一步理解体积和容积的含义。2.能够通过“类比猜想—验证说明”探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法。3.能够正确计算圆柱的体积,应用于实际生活,解决简单的实际问题。
《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。因此我一开始利用旧知先提出问题:什么是圆柱的体积,以此揭示课题。教学时我首先引导学生观察圆柱的体积与哪些要素有关,学生不难发现两个重要要素底面积和高。同时学生学生也学过了圆面积公式的推导,已经有了把圆形拼成近似的长方形的经验,由此知识点我引导点拔学生大胆猜想把圆柱切拼成长方体,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生推导出圆柱的体积等于底面积乘高。本节课的内容有利于发展学生的空间观念,培养学生的逻辑推理能力,在公式推导过程中,还可以培养学生猜想、类推、对应的数学思想和方法。另外,通过猜想、验证、小组讨论等方式学生体验了探索数学奥秘的过程,培养学生对数学学习的兴趣和探索精神。
圆柱的体积公式推导过程可以培养学生多方面的能力,一、观察能力、独立思考能力、大胆猜想能力、小组合作能力、解决问题和应用等能力。这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程做为本节课的教学重点;而学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,在圆柱体积公式的推导过程中,要用到等积变形、对应、以及逻辑推理的知识,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学难点。
在应用公式时我采用了两个层次:第一层次基本练习,给出底面积和高两个已知量,让学生直接口算求出体积。第二个层次变形练习:分别给出底面半径和高、直径和高、周长和高,让学生选择简便的方法求体积。这样即培养了学生思维的灵活性又加深了对公式的理解。同时也关注了学生思维的差异性。
本节课主要采用的教学方法有:演示法、提问法等,在学习过程中要用到的方法有:观察法、思考法、合作探究法等。
圆柱的体积
下面长方体、正方体和圆柱的底面积相等,高也相等。
(1)长方体和正方体的体积相等吗?为什么?
(2)猜一猜,圆柱的体积与长方体、正方体的体积相等吗?
用什么办法验证呢?
圆可以转化成近似的长方形
计算面积,圆柱可以转化成
近似的长方体计算体积吗?
把圆柱的底面平均分成16份,切开后照下图的样子拼一拼。
拼成了一个近似的长方体。
把圆柱的底面平均分成16份,切开后照下图的样子拼一拼。
如果把圆柱的底面平均分成32 份、64 份XXXXXXXXXX切开后拼成的物体会有什么变化?
平均分的份数越多,拼成的
物体就越接近长方体。
把圆柱的底面平均分成16份,切开后照下图的样子拼一拼。
如果把圆柱的底面平均分成32 份、64 份XXXXXXXXXX切开后拼成的物体会有什么变化?
拼成的长方体与原来的圆柱有什么关系?
把圆柱的底面平均分成16份,切开后照下图的样子拼一拼。
拼成的长方体与原来的圆柱有什么关系?
长方体的体积与圆柱的体积相等。
长方体的高等于
圆柱的高。
长方体的底面积等于圆柱的底面积。
把圆柱的底面平均分成16份,切开后照下图的样子拼一拼。
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积 = 底面积XXXXX高
如果用V 表示圆柱的体积,S 表示圆
柱的底面积, h 表示圆柱的高,圆柱的体
积公式可以写成:
V = Sh
把圆柱的底面平均分成16份,切开后照下图的样子拼一拼。
圆柱的体积 = 底面积XXXXX高
回顾圆柱体积公式的探索过程,你有什么体会?
计算长方体、正方体、圆柱的体积都可以用底面积乘高。
把圆柱转化成长方
体,与探索圆面积的方法类似。
可以用长方体体
积公式推导出圆
柱体积公式。
一个圆柱形零件,底面半径是5厘
米,高某某8厘米。这个零件的体积是多
少立方厘米?
3.14XXXXX52XXXXX8=628(立方厘米)
答:这个零件的体积是628立方厘米。
1. 计算圆柱的体积。(单位:cm)
3.14XXXXX(8XXXXX2)2XXXXX4=200.96(立方厘米)
3.14XXXXX32XXXXX6=169.56(立方厘米)
2. 一根圆柱形木料,底面周长是 62.8 厘米,高某某50厘
米。这根木料的体积是多少?
62.8XXXXX3.14XXXXX2=10(厘米)
3.14XXXXX102XXXXX50=15700(立方厘米)
[教学内容/学生情况分析]
《圆柱的体积》是人教版标准实验数学课本第十二册第二单元《圆柱和圆锥》中第一小节的最后一个内容,它包括圆柱体的体积计算公式的推导和运用公式计算圆柱的体积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体转化成已学过的立体图形,再通过观察、比较找出两个图形之间的关系,来推导出圆柱的体积计算公式。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。在此之前,学生已掌握了一定的几何知识与数学方法,部分学生思维活跃,数学成绩较好,加上“圆的面积公式”的推导的学习,辅以多媒体的教学,学生应该容易完成圆柱体体积计算公式的推导过程,为今后学习复杂的形体知识打下扎实的基础。
[教学目的]
1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。
2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。
3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
4、借助远程教育的课件资源演示,培养学生抽象、概括的思维能力。
[教学重难点]
圆柱体体积计算公式的推导过程
[设计理念及策略]
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了远程教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:
1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。
2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。
3、练习多样化,层次化。
4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。
[教学准备]
多媒体课件(远程教育资源光盘)、圆柱体体积演示器
[教学过程]
一、创设情境 设疑导入
1、复习铺垫。
(1)求各园的面积:
A、半径3厘米 B、直径为4厘米 C、周长为62.8厘米
(2)什么叫体积?长方体的体积怎样计算?
2、导入新课。
1、出示(光盘资源)几组圆柱体实物图(同底等高、同底不等高、等高不等底),引导学生观察比较它们体积的大小。
激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积?
2、指名说说自己想法。教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)
二、自主探究 学习新知
(一)探究推导圆柱的体积计算公式
1 、教师演示(远程资源动画演示“圆柱体的体积”):
(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?
(2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?
(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。
2、学生利用学具独立操作 (教师巡视、指导操作有困难的学生) ,思考并讨论。
(1) 圆柱体切开后可以拼成一个什么图形?(近似的长方体)
(2) 通过刚才的实验你发现了什么?① 拼成的近似长方体的体积与原来的圆柱体积有什么关系?②拼成的近似长方体的底面积与原来圆柱的底面积有何关系?③拼成的近似长方体的高与原来的圆柱的高有什么关系? (3)学生汇报交流。
3、让学生根据圆的面积公式推导过程,进行猜想。
如果把圆柱的底面平均分成32份或更多,拼成的长方体形状怎样?平均分成的份数越多,拼成的长方体形状会怎样?
4、推导圆柱的体积公式(利用远程资源动画演示推导过程)
(1) 学生分组讨论、汇报:圆柱体的体积怎样计算?
(2)用字母表示圆柱的体积公式。学生口述后,教师板书。
因为 长方体的体积=底面积×高
↓ ↓ ↓
所以 圆柱的体积 =底面积×高
↓ ↓ ↓
V = S h
5、引导学生进一步讨论后交流。
(1)要求圆柱的体积必须知道哪些条件?
(2)如果分别知道圆柱的底面半径、底面直径、底面周长,又怎样求圆柱的体积?
(二)、练一练
1、学生完成20页的[做一做]。
2、让学生想一想:如果已知圆柱底面的半径r和高h,怎样求圆柱的体积?(请学生自学并填写第44页第一自然段的空白部分)
(三)教学例6
1、引导学生默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?
2、指名说解题思路,讨论并归纳解题方法。
3、学生独立按讨论的方法完成例6。
4、教师评讲、总结方法。
三、练习巩固 应用拓展
(一)巩固练习
1、完成第21页的“练习三”第1、2题。(指名板演,其余同学在作业本上练习,完成后及时反馈练习中出现的错误,及时加以评讲。)
2、学生判断。
(1)长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。( )
(2)圆柱体的底面积和体积成正比例。( )
(3)圆柱的体积和容积实际是一样的。( )
(二)、拓展训练(课件出示拓展延伸题,学生课外练习)
一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
四、总结延伸
通过本节课的学习,让学生谈谈本节课学后有什么收获?(根据学生回答教师总结延伸)
五、作业
练习三:第3、4、6题
[附:板书设计]
圆柱的体积
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
↓ ↓ ↓
V = S h
教学目标:
1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。
3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。
教学重点:
圆柱体积计算公式的推导过程并能正确应用。
教学难点:
借助教具演示,弄清圆柱与长方体的关系。
教具准备:
多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。
教学设想:
《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识从生活中来到生活去的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。
教学过程:
一、创设情境,激疑引入
水是生命之源!节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?
(2)讨论后汇报
生1:用量筒或量杯直接量出它的体积;
生2:用秤称出水的重量,然后进一步知道体积;
生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?
生1:把水到入长方体容器中
生2:我们学过了长方体的体积计算,只要量出长、宽、高就行
[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]
2、创设问题情境。
师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?
[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]
师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验,探究新知
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?
生1:圆柱的上下两个底面是圆形
生2:侧面展开是长方形
生3:说明圆柱和我们学过的圆和长方形有联系
师:请同学们想想圆柱的体积与什么有关?
生1:可能与它的大小有关
生2:不是吧,应该与它的高有关
[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
配合学生回答演示课件。
[设计意图:通过想象,进一步发展学生的空间观念,由形到体;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]
2、小组合作,探究新知
(1)启发猜想:我们要解决圆柱的'体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)
(2)学生以小组为单位操作体验。
把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份)
[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]
(3)学生小组汇报交流
近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。
教师根据学生汇报,用教具进行演示。
(4)概括板书:根据圆柱与近似长方体的关系,推导公式
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
[设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识 公式)]
三、实践应用,巩固新知。
1、火眼金睛判对错。
(1)长方体、正方体、圆柱的体积都等于底面积乘高。( )
(2)圆柱的高越大,圆柱的体积就越大。( )
(3)如果两个圆柱的体积相等,则它们一定等底等高。( )
[设计意图:加深对刚学知识的分析和理解。]
2、计算下面各圆柱的体积。
(1)底面积是30平方厘米,高4厘米。
(2)底面周长是12。56米,高是2米。
(3)底面半径是2厘米,高10厘米。
[设计意图:让学生灵活运用公式进行计算。]
3、实践练习。
提供在创设情景中圆柱形接水容器的内底面直径和高。
这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。
[设计意图:让学生领悟数学与现实生活的联系。]
4、课堂作业。
为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?
[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]
四、反思回顾
师:通过本节课的学习,你有什么收获吗?
[设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]
板书设计:
圆柱的体积
根据圆柱与近似长方体的关系,推导公式
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
教学反思:
本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号