当前位置:首页 > 教案教学设计 > 数学教案

容积和容积单位教学设计

日期:2022-01-25

这是容积和容积单位教学设计,是优秀的数学教案文章,供老师家长们参考学习。

容积和容积单位教学设计

容积和容积单位教学设计第 1 篇

  教学目的:

  1、让学生在具体情境中感受并认识容积,联系实际初步形成1升、1毫升的容量观念,通过实验操作体会1升、1毫升有多少。

  2、知道容积和体积的联系与区别,知道容积单位和体积单位之间关系,掌握容积单位之间的进率。

  3、让学生在课前课后的实践活动中,体会数学与生活的密切联系,增强学习数学的兴趣和学好数学的信心,获得积极的数学学习情感和解决实际问题的能力。

  教具准备:

  多媒体课件,一个1升的量杯,一个标有毫升刻度的量筒, 4盒250毫升的牛奶盒,1盒1升的牛奶盒,一个1立方分米的正方体盒子和一袋沙。

  学情分析:

  本课是在学生已经认识了体积以及体积单位的进率的基础上,继续认识容积以及计量液体的体积常用的容积单位升和毫升,认识1升=1000毫升,知道容积和体积的联系与区别,知道容积单位和体积单位之间关系。五年级的学生有了一定的收集信息能力,有意识让学生收集饮料瓶、饮料盒,并先看一看上面的信息。

  教学过程:

  一、复习导入

  1、什么叫体积?

  2、常用的体积单位有哪些?它们之间的关系呢?

  3、怎样计算长方体和正方体的体积?公式呢?

  4、导入课题

  师:展示一盒1升装的牛奶。提问:你会计算这个盒子的体积吗?你知道里面装的是什么?你会计算盒里面牛奶的体积吗?

  师:今天,我们就来学习物体的容积和容积单位。

  二、观察实验——探索新知

  1、感受容积意义

  (1)情境出示集装箱,演示往里面装货物的过程。

  交流:生活中有哪些物体能装些什么?谁来说一说?

  生:碗能装饭。

  生:瓶能装水、油。

  生:箱子、冰箱。

  师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器。那么什么叫做物体的容积?你能用自己的话说一说吗?

  这些容器所能容纳物体的体积,通常叫做它们的容积。生活中也有称为容量。

  (2)在量杯里倒入一部分的沙,这部分沙的体积是不是这个量杯的容积?

  把沙倒入量杯并且使之高出量杯口,这些沙的体积是不是这个量杯的容积呢?

  那多少沙子的体积才是这个量杯的容积呢?

  [设计意图:以学生的事实知识与生活经验为基础的教学原则,请学生课前进行必要的观察、感知容器、容积,在课堂上进一步的引导,感悟,从形象思维上升到抽象思维,认识容积的意义。]

  2、探索容积单位

  常用的容积单位有哪些呢?

  一个长方体的仓库里存放着水泥,从里面量仓库长10米,宽8米,高6米,能容纳多少水泥?

  学生讨论后计算汇报:

  10×8×6=486(立方米)。

  仓库的容积等同于一个长方体的体积,但要从仓库里面量长、宽、高,计算长方体的体积用体积单位,计算仓库的容积也就用体积单位。

  计算容积一般用体积单位。容积的计算方法,跟体积的计算方法相同。

  在计量液体体积的时候,就要用到另一种容积单位:升和毫升。

  升和毫升就是我们这节课要认识的容积单位。自学课本,再观察老师桌面上摆的教具,小组交流说说你的认识。

  生:我们在量杯和量筒上,能看到刻有升和毫升的刻度,1升=1000毫升。

  3、验证容积单位和体积单位的联系

  验证1升=1立方分米:展示装了1立方分米砂的正方体盒,把砂倒入1升的量杯,得出1升的量杯容积是1立方分米。从而得出1升=1立方分米。

  让学生根据立方分米和立方厘米以及升和毫升之间的进率关系,交流推导出1毫升=1立方厘米。

  4、生活应用,感悟新知。

  师:重现一盒1升装的牛奶。现在,你会计算这个盒子的体积吗?你会计算盒里面牛奶的体积吗?

  师:这个盒的容积就是这个盒的体积,这句话对吗?为什么?

  盒子的体积指什么?(盒子所占空间的大小。)

  盒子的容积指什么?(盒子所能容纳物体的大小,这里也就是装满了的牛奶的体积。)

  小结:一般说来,物体的容积比体积小。

  巩固新知

  判断下列说法是否正确,对的在()内打√,错的打x。

  ①计算容积或体积都是从容器外面量长、宽、高。

  ②冰箱的容积就是冰箱的体积。

  ③游泳池注满水,水的体积就是游泳池的容积。

容积和容积单位教学设计第 2 篇

  教学目标:

  一、知识与技能

  1、理解容积的含义,体会容积和体积的关系。

  2、认识常用的容积单位,感知建立升和毫升的容积观念。

  3、掌握容积的计算方法,能进行单位之间的换算。

  二、过程与方法

  1、经历容积概念的探究与理解过程。

  2、通过比较,明确容积单位与体积单位的区别和联系。

  三、情感态度与价值观

  1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

  2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

  教学重点:

  建立容积的观念,掌握容积单位之间的进率。

  教学难点:

  理解容积与体积的联系与区别。

  教学过程:

  一、创故事情景

  今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

  二、复习导入

  第一变 回忆

  (1) 什么叫体积?

  (2) 体积单位有哪些?它们之间的进率是什么?

  (3) 体积的计算方法是什么?

  三、探究新知

  第二变 思考

  1、教学容积概念。

  运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

  生:空心的 能装东西的

  师:你在生活中见过哪些空心的,能装东西的物品?

  生:举实例 (饭盒、矿泉水瓶、奶牛盒……)

  师:你想知道这些容器里面能装多少东西吗?

  这就是我们今天学习的内容:容积和容积单位 (板书)

  什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的`容积。

  练习

  根据容积定义判断:

  (1)电饭褒的体积就是它的容积( )

  计量容积一般可以用体积单位( )

  (2)数学书P53页第一题。

  突出:体积 (外面量数据) 容积(里面量数据)板书

  2、教学容积单位:升和毫升

  师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

  生:500毫升 18.9升

  师:升、毫升就是我们今天要学习的容积单位。板书

  生:净含量:250毫升 1升……

  师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

  (选1升和1立方分米来对比,为实验作铺垫)

  回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书

  练习:(1)四人小组互相说说各自收集物品的容积。

  (2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

  3、教学容积单位与体积单位之间的换算。

  师:谁知道这两个容积单位之间的进率是多少?生:1000。

  师:你是怎么知道的?

  生:书上写的。

  师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

  由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

  师:从实验中你证实了1升=1000毫升,还得出什么结论?

  生:1升=1立方分米。

  如此类推:你还能推理出什么关系?

  生:1毫升=1立方厘米 1立方米=1000升

  练习:数学书P52做一做第一题和P53第四题

  第三变:计算

  4、教学容积的计算

  出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?

  指一名学生读题。(突出容积的计算方法与体积计算方法相同)

  (1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

  (2)学生做完后集体订正。

  第四变:运用

  四、应用知识,解决问题

  咳两声,讲了一节课,老师口干了,很想喝水。

  师:谁知道一个正常人每天要喝多少水才合适才健康?

  生:1500毫升、1000毫升……

  师:你是从哪里知道的?

  生:书里介绍的。

  师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

  小组活动:

  (要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

  (1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

  全班分享

  五、总结质疑

  今天学习了容积和容积单位,你有什么收获?

  六、拓展延伸,发展思维

  作业:

  1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

  2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

  教学反思:

  通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

容积和容积单位教学设计第 3 篇

教学目标

1.知道容积的意义。

2.掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3.会计算物体的容积。

教学重难点:

教学重点:容积与体积的关系。

教学难点:容积与体积的关系。

教学过程

一、复习检查:

说出长正方体体积计算公式。

二、新授:

1、反馈容积及容积单位:

生汇报:(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

1升=1000毫升

将1升的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

1升 = 1立方分米

1000毫升 1000立方厘米

1毫升=1立方厘米

练一练:

1.8升=( )毫升 3500mL=( )L 15000升 =( )毫升

1.5dm3 =( )L

(4)汇报小组活动的结果,你发现了什么:

【1】将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

【2】估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例5、一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

三、拓展应用

有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

四、课堂总结

计算容积的步骤是什么?

五、作业布置

41页12、13题

容积和容积单位教学设计第 4 篇

  教学目标

  知识与技能:使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。感受1毫升的实际意义,和应用所学之事解决生活中的简单问题。

  过程与方法:培养学生的观察能力和解决问题的能力

  情感态度价值观:培养学生独立思考、严肃认真的学习态度。

  教学重点

  建立容积和容积单位观念,容积单位换算

  教具、学具准备

  长方体纸盒、木盒各一个,一些细沙;若干个容积为500ml的易拉罐,1dm3的正方体容器若干个,量杯、滴管若干个,一些水,例6的多媒体课件。

  教学过程

  一、复习导入

  1、什么叫物体的体积?它常用的计量单位是什么?

  2、师:(用橡皮泥做两个体积相等的长方体模型,空心,一个壁厚些)同学们,怎样才能知道这两个长方体体积?

  生:可以先量出它们的`长、宽、高各是多少,再算出它们的体积。

  生:(动手测量)计算

  师:(出示一堆细沙)请同学们再想一想,如果把这两个盒子都装满细沙,两个盒子里装的细沙会一样多吗?

  师:同学们,像刚才你们看到的那样,盒子所能容纳细沙的体积,就是盒子的容积。

  二、探求新知

  1、教学容积的概念。

  师:你认为还有什么物体也有容积呢?

  生1:水桶里盛满水,这些水的体积就是水桶的容积。

  生2:饮料瓶里装满饮料,饮料的体积就是饮料瓶的容积。

  生3:茶叶桶所能容纳茶叶的体积,就是茶叶桶的容积。

  ……

  (补充)仓库能容纳货物的体积,箱子里装书的体积,一个妈妈正往桶里装水,等。

  教师:瓶子、油筒、仓库所能容纳的物体的体积,通常叫做它们的容积,这节课我们就来研究容积和容积单位。(板书课题)

  2、认识容积单位。

  (1)因为物体的容积通过所容纳物体的体积表现出来的,因此容积的计量单位一般就用体积单位。如上面盒子的容积可以用什么单位?

  (2)计量液体的体积,如水、油等。通常容积单位升和毫升也可以写成L和ml。

  举例:护工把一瓶药水交给病人,嘱咐说:“每天吃2毫升。”。司机对加油站的工作人员说,“加20升汽油。”商店里货架上的可乐,外包装上标着500ml……

  (3)感知毫升和升

  师:1ml究竟有多少呢?请大家认真观察。

  (出示一个小量杯,请学生上台指出1ml所在的刻度。)

  师:请同学们猜一猜,如果用滴管来滴水,滴几滴水可能是1ml?

  (生猜测)

  师生验证。

  实际猜测药瓶容积。

  师:把这1毫升的水倒进1立方厘米的正方体容器里面,刚好到满。

  提问:这个这实验说明什么?(1ml=1cm3)

  提问:大家想一想1升是多少毫升?相互讨论。

  汇报:因为1升是1立方分米,1毫升是1立方厘米,而1立方分米=1000立方厘米,所以,1升就等于1000毫升。即1L=1000ml。

  (出示一个易拉罐)每个小组都有一个易拉罐,请先看一看,它的容积是多少毫升?然后根据活动内容分小组进行活动。

  (屏幕出现活动内容:易拉罐的容积有多少毫升?几个易拉罐的容积是1L?1L水大约可以倒满几杯?一杯水大约有多少毫升?然后再动手试一试,通过实验你发现了什么?)……

  师:请你们想一想,除了上面的易拉罐,哪些物品上也标有毫升或升?

  生1:牛奶盒子上标有毫升。

  师:不错,有一种牛奶盒子上就标着250ml。

  生2:我家的“凉拌醋”瓶子上标有500ml。

  生3:我家吃的“金龙鱼”油瓶上标有5L。

  ……

  师:请大家看屏幕,先认真想一想,再看怎么填。

  [屏幕出示:5L= ( )ml,500ml= ( )L,2.4L=( )ml=( )cm3,2750ml=( )L=( )dm3。]

  3、教学例5

  师:请大家认真想一想,长方体和正方体容器容积的计算方法是什么?

  教师讲解:容器容积的计算方法,跟体积的计算方法相同。但必须注意,计量的时候要从容器的里面量长、宽、高,才能更准确地算出它的容积是多少。

  (屏幕出示例5,学生读题。)

  ①让学生尝试解答。

  ②解答:5 4 2=40(dm3)

  40dm3=40L

  答:这个油箱可装汽油40L。

  讲评时要强调是从容器面量长、宽、高,并要注意,要把立方分米换算成长。汽油是液体,最用好“L”作单位。

  “做一做”

  三、巩固应用

  1、填空

  1 L=( )ML 450毫升=( )升 6.4升=( )毫升

  2、判断

  (1)一个游泳池的容积大约是2000毫升。( )

  (2)一个杯子能装水1升,这个杯子的容积就是1升。( )

  (3)一个正方体的木箱,它的体积和容积一样大。( )

  3、完成教材第53页练习九的第1~3题

  四、全课总结

  师:谁能谈谈这节课的收获?(生回答略)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号