日期:2022-01-29
这是平行线及其判定教案优秀,是优秀的数学教案文章,供老师家长们参考学习。
一、教学目标
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的数学实验的演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
二、教学重点
平行线的三个特征.
三、教学难点
灵活地利用平行线的三个特征解决问题.
四、教学过程
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
教学目标
1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.
2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.
3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.
重点、难点
重点: 探索和掌握平行公理及其推论.
难点: 对平行线本质属性的理解,用几何语言描述图形的性质.
课前准备
分别将木条a、b与木条c钉在一起,做成图所示的教具.
教学过程
一、创设问题情境
1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?
2.教师演示教具.
顺时针转动木条b两圈,让学生思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中, 有没有直线b与c木相交的位置?
3.教师组织学生交流并形成共识.
转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.
二、平行线定义,表示法
1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内, 不相交的两条直线叫做平行线.
直线a与b是平行线,记作"∥",这里"∥"是平行符号.
教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.
2.同一平面内,两条直线的位置关系
教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.
在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.
三、画图、观察、归纳概括平行公理及平行公理推论
1.在转动教具木条b的过程中,有几个位置能使b与a平行?
本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行.
2.用直线和三角尺画平行线.
已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
3.通过观察画图、归纳平行公理及推论.
(1)由学生对照垂线的第一性质说出画图所得的结论.
(2)在学生充分交流后,教师板书.
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
(3)比较平行公理和垂线的第一条性质.
共同点:都是"有且只有一条直线",这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的"一点"要在已知直线外,两垂线性质中对"一点"没有限制,可在直线上,也可在直线外.
4.归纳平行公理推论.
(1)学生直观判定过B点、C点的a的平行线b、c是互相平行.
(2)从直线b、c产生的过程说明直线b∥直线c.
(3)学生用三角尺与直尺用平推方验证b∥c.
(4)师生用数学语言表达这个结论,教师板书.
结果两条直线都与第三条直线平行,那么这条直线也互相平行.
结合图形,教师引导学生用符号语言表达平行公理推论:
如果b∥a,c∥a,那么b∥c.
(5)简单应用.
练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行, 那么这三条直线互相平行吗?请说明理由.
本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.
四、作业
1.课本P19.7,P20.11.
2.选用课时作业设计.
课时作业设计
一、填空题.
1.在同一平面内,两条直线的位置关系有_________.
2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
二、判断题.
1.不相交的两条直线叫做平行线.( )
2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )
3.过一点有且只有一条直线平行于已知直线.( )
三、解答题.
1.读下列语句,并画出图形后判断.
(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.
(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.
2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.
答案:
一、1.相交与平等两种 2.相交 3.过直线外一点有且只有一条直线与已知直线平行 4.一个,零
二、1.× 2.∨ 3.× 三、1.(1)略 (2)a∥c 2. 交点有四种,第一没有交点,这时第三条直线互相平行,第二有一个交点,这时三条直线交于同一点,第三有两个交点,这时是两条平行线与第三条直线都相交,第四有三个交点,这时三条直线两两相交.
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
(一)重点
判定定理的推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】
本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
1)联系生活实际,创设问题情境。学生的学习过程既是一个认知的过程,又是一个探究的过程。七年级学生一般都具有好奇、好问的探究心理,创设问题情境,能够使学生的学习心理迅速地由抑制到兴奋,而且还会使学生把知识的学习当作一种自我需要,能引起学生内部认知矛盾的冲突,使学生在疑中生奇,疑中生趣,不断激起学生的学习欲望。案例中,教师出示飞机模型的机翼,平移图形的趣题,提供了一些大家都十分感兴趣的问题,由此使学生产生了强烈的求知欲望和主动探索的兴趣。
2)组织合作交流,营造探究氛围。学会合作与交流是现代社会所必须的,也是数学学习过程中应当提倡的组织形式。建立平等、民主、友爱的师生关系,创设和谐、宽松的课堂氛围,是学生主动探究的前提条件。教师作为课堂教学的主导,他的任务是激发学生自己去学习、研究数学,并与学生一起做数学,案例中,教师提供了探索材料:猜角度、探索特征、平移图形等。在鼓励学生独立思考的基础上,有计划地组织他们进行合作探究,以形成集体探究的氛围,强化学生的主体意识,培养学生的合作精神,使学生成为教学活动的主动参与者,真正实现学有所得,学有所用,学有所思,有效地培养学生的探究能力和创新思维。
3)尊重学生需要,关注学习过程。新课程理念倡导课堂教学应结合具体的数学内容,尽量采用“问题情境——建立模型——解释、应用与拓展”的模式展开。本案中创设情景,让学生经历知识的形成与应用,在学习过程中去体验数学和经历数学,学生提出了与学习内容有关的问题(特别是探索平行线特征时只要量1个角的问题),教师对他的提问表示肯定,并且充分尊重学生的需要,启发学生们一起来研究、解决这个问题。因为,学习归根结底是学生的事,学习效果的好坏最终取决于学生是否真正参与到学习活动中去,是否积极主动地思考,教师只是一个组织者和引导者,教师的责任更多的应该是为学生提供思考的机会,为学生留有思考的时间与空间,而不是急于下结论。特别是那些需要较深入理解和需要一定的创造性才能解决的问题,更要让学生有一定的思考时间。案例中,探索平行线特征以及平移图形的过程,更是放手让学生操作、比较、争论、分析归纳,课堂上百家争鸣、百花齐放,使不同层次的学生都得到了应有的发展。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号