当前位置:首页 > 教案教学设计 > 数学教案

平面向量共线公式

日期:2022-01-29

这是平面向量共线公式,是优秀的数学教案文章,供老师家长们参考学习。

平面向量共线公式

平面向量共线公式第 1 篇

  【教材分析】

  本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

  【教学目标】

  知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

  情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

  【学情分析】

  平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

  【教学过程】

  一、创设情境,引入课题。

  1、游戏:小小魔术师。教师出示不规则图形。

  (1)师:你能直接计算出这个图形的面积吗?

  (2)师:你能计算出这个图形的面积吗?说一说用什么方法?

  (3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

  2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

  (设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

  二、激趣引思,导入新课。

  师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

  生1:我想知道要花多少钱才可以做成。

  生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

  生3:我想知道这块胶合板的面积有多大。

  师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)

  (设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

  三、动手操作,探究发现。

  1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

  师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

  教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

  (1)这个平行四边形的面积是多少平方厘米?

  (2)它的底是多少厘米?

  (3)它的高是多少厘米?

  (4)这个平行四边形的面积跟它的高与底有什么关系?

  (5)请同学们猜一猜:怎样计算平行四边形的面积?

  2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

  我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

  生:不方便。

  师:既然不方便,我们能不能用更方便的方法来解决呢?

  小组交流,学生讨论,发表意见。

  生:用剪和拼的方法。

  师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

  师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

  师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

  师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

  (生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

  师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

  师:再请一个同学展示一下,他的剪法有什么不一样吗?

  (生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

  师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

  小组讨论:

  ⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?

  ⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?

  ⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?

  师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)

  师:长方形的面积=长×宽,那么平行四边形的面积怎样求?

  生:平行四边形的面积=底×高(板书)

  师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)

  教师小结方法指名让生叙述。

  师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

  师:现在我们可以确定当初的猜想谁是正确的?

  (设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

  四、实践应用,巩固提高。

  师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

  教师板书:5×4=20(平方米)

  出示例1 (同桌讨论,独立完成,最后全班交流。)

  教师板书:S=ah=6×4=24(平方米)

  师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

  (设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

  五、分层练习, 强化应用。

  1、填空。

  (1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

  (2)0.85公顷=( )平方0.56平方千米=( )公顷

  2、计算下面各个平行四边形的面积。

  (1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

  3、解决问题。

  (1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

  (2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

  (设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

  六、总结升华,拓展延伸。

  1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

  (设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

  2、课后练习

  (1)、练习十五第1题,第2题。(任选一题)

  (2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

  平行四边形的面积练习题

  1、 填一填

  (1)1平方米=( )平方分米=( )平方厘米

  (2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积( )。

  转化后长方形的长与平行四边形的( )相等,宽与平行四边形的( )相等。

  (3)平行四边形的面积=( )×( ),字母公式为( )

  (4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是( )

  (5)等底等高的两个平行四边形的面积( )

  2、判断

  (1)形状不同的两个平行四边形面积一定不相等 ( )

  (2)周长相等的两个平行四边形面积一定相等 ( )

  (3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积 ( )

  3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?

  24厘米

  50厘米

  升级跷跷板

  4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?

  5、一快平行四边形的菜地,底是36米,高是25米,每平方米收白菜8千克,这块地共收白菜多少千克?

  6、一个平行四边形的果园,底是30米,高是15米,中了90棵梨树,平均每棵梨树占地多少平方米?

  智慧摩天轮

  7、已知下图中正方形的周长是36厘米,求平行四边形的面积。

  8、一块平行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?

平面向量共线公式第 2 篇

  【教学目标】

  1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

  2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  【教学重点、难点】

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

  【教具、学具准备】

  多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

  【教学过程】

  一、创设情境,抽取方法、导入新课

  1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

  师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

  学生思考、回答:

  (1)数格子的方法。

  (2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

  动画演示割补的过程。

  师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

  既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。

  二、应用方法,动手操作,探究新知

  1、预设问题:

  师:我们来看下面的问题:

  实验小学有一个花坛,想要计算出它的面积,怎么计算呢?

  师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:

  怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1) 出示问题:

  师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ① 平行四边形可以转化成学过的哪种图形?

  ② 平行四边形的底和高分别与转化后的图形有什么关系?

  ③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

  (3) 小组探究。

  (4) 组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1) 出示问题:

  师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ① 平行四边形可以转化成学过的哪种图形?

  ② 平行四边形的底和高分别与转化后的图形有什么关系?

  ③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

  (3) 小组探究。

  (4) 组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  (其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

  (4)师生交流提炼,形成板书:

  师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

  师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

  3、教学例1:

  师:有了这个成果,我们会解决前面的问题了吗?

  出示例1:下图平行四边形花坛的面积是多少?

  学生回答,教师板书:S=ah=6×4=24(cm2)

  3、巩固小结:

  通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

  三、分层训练,巩固内化

  1、求下面的平行四边形的面积,只列式不计算:

  (第三个图形计算中提问:用12×9.6行不行?强调底与高的对应)

  2、慧眼识对错:

  (1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )

  (2) 平行四边形的底越长,面积就越大。( )

  (3) 下面平行四边形的面积是:8×5=40(平方厘米)( )

  ,人教新课标五上《平行四边形的面积》教案2

  (4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )

  3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:

  师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)

  我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)

  学生测量、计算、展示。

  师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。

  4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?

  四、课堂小结:

  师:这节课你有什么有收获?

  师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

平面向量共线公式第 3 篇

课时目标:

1、通过直观、形象的感*材料让学生初步感知平行四边形与长方形的联系,引导学生运用转化推导出平行四边形面积计算公式,并会运用公式进行计算。

2、培养学生观察、概括、动手能力。

3、渗透转化思想。

教学重点:理解掌握平行四边形面积的计算公式推导及运用

教学难点:理解掌握平行四边形面积的计算公式推导

教学准备:投影、剪*、平行四边形纸片、课件

教学过程:

一、复习、导入

1、我们学校刚建的多功能大厅前有一块平行四边形的空地,你打算怎么来给它美化呢?

如果要给它植上草皮,要植多少草皮呢?要花多少钱买呢?

看来,最关键的问题还是要考虑这块平行四边形地的面积有多大。

今天咱们就一起来研究一下平行四边形面积的计算。(板书)

2、出示三幅图

(1)这三幅图中每个小方格表示1平方厘米,不满一格的都按半格计算。(边说边用教鞭指)你知道它们的面积分别是多少吗?

(2)图1的面积是多少?怎么想的?

a你是一个一个地数,数出有15个小方格的呀。

b(每排有三个,共有五排,3×5=15个,所以这个图形的面积应该是15平方厘米。)

c这是一个什么图形?(长方形)你还能想到怎么求它的面积吗?

对了,运用长方形的面积公式也能计算出它的面积。

(3)第二个图形的面积是多少?你是怎么想的?

a分为上中下三块来求

b割补

他的这个想法真好!(演示)先在头脑中剪下左边凸出来的部分,平移到右边,再拼到凹进去的部分,这就把原来的图形转化成了长方形,就能很快求出这个图形的面积了。这种方法真不错。

(4)图3的面积是多少呢?你又是怎么想的?

(演示)他也是通过剪、移、拼把原来的图形转化成长方形来计算面积的。

(5)同学们都很聪明,都能想到(演示)通过剪、移、拼,可以把后两个图形转化成咱们已学过的长方形,这样就能快速计算出它们的面积。这种转化的方法非常巧妙,它的应用也非常广泛,运用它可以帮助我们解决很多数学问题呢!

二、新授

1、探索平行四边形面积的计算

(1)出示平行四边形

今天我们都来当一回数学家,看谁能运用这种转化的方法来探索出平行四边形面积的计算?

想一想。

(2)拿出1号平行四边形,运用你手头的工具,自己动手试一试,算出它的面积是多少。

把你的想法和同桌交流一下。

汇报。

你明白他的意思了吗?我们再看一遍。(演示)边看边说。

把平行四边形沿着它的一条高剪开,平移到右边,再拼起来,就把它转化成了一个长方形,这样就能求出它的面积了。他的这种方法确实很巧妙。

(3)好了,大家都会求了,用这种方法试着求出2号平行四边形的面积是多少。

谁来说说面积是多少,你是怎么得到的?

(4)拿出3号平行四边形,比一比,看谁能很快求出它的面积。

这位同学算得还是比较快的。你为什么算这么快呢?

原来你是在头脑中完成了剪拼的动作,怪不得这么快呢!

(5)再来一次,求出4号平行四边形的面积,看谁最快?

这一次,大家都比较快,你们是怎么做的?

汇报。

哪些同学的做法和他一样?

(5)也就是说,只要测量出这个平行四边形的什么就可以求出它的面积了?

(底和高。)

为什么呢?

生解释,电脑演示。

再请一生说,同桌说。

大家一起来说一说。

(演示)

通过实验看出:我们可以把一个平行四边形转化成一个长方形,这个长方形的长也就是平行四边形的,长方形的宽也就是平行四边形的,长方形的面积也就是平行四边形的。

因为长方形的面积=,

所以平行四边形的面积=。

(板书)平行四边形的面积=底×高齐读两遍

(7)我们还可以用字母来表示这个计算公式。

出示:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以怎样写?

生回答,师板书:s=a×h

在含有字母的式子里,字母和字母中间的乘号可以记作“.”,s=a.h,读。也可以省略不写,s=ah,读。

2、出示例题

试着解决下面的问题,看看你今天学得怎么样?

齐读。

口答。怎么想的。出示*。

3、快速计算出下面每个平行四边形的面积的面积。

补充

计算下面平行四边形的面积正确的是()

(单位:厘米)

64

a8×3=24(平方厘米)

b3×4=12(平方厘米)

c4×6=24(平方厘米)

d3×6=18(平方厘米)

为什么a和c都对呢?

这就是提醒大家在计算平行四边形面积时还要注意什么?

(要选择相对应的底和高求它的面积。)

4、出示可以活动的长方形教具,观察拉动后,图形发生了哪些变化?为什么?

三、解决问题

现在咱们再来为学校考虑一下刚才的那个问题,要知道这块平行四边形的空地植草皮的面积是多少,需要知道什么条件?

告诉你底是30米,高是20米,面积是多少平方米?

如果每平方米的草皮20元,总共需要花多少钱呢?这么贵的草皮我们可得好好爱护呀!

四、总结

上完这节课,你有什么收获?

平面向量共线公式第 4 篇

  一、教学目标

  (一)知识与技能

  让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握平行四边形面积计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1.创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号