日期:2022-02-05
这是指数函数引入的经典例子,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。
教学重点:
用指数函数模型解决实际问题。
教学难点:
指数函数模型的建构。
教学过程:
一、情境创设
1、某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为()万元,后年的产值为()万元、若设x年后实现产值翻两番,则得方程()。
二、数学建构
指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。
三、数学应用
例1、某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。
例2、某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数=f(t)的解析式。
例3、某位公民按定期三年,年利率为2.70%的方式把5000元存入银行、问三年后这位公民所得利息是多少元?
例4、某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。
(1)写出本利和随存期x变化的函数关系式;
(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。
(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)
小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算、这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式、比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b、这就是复利计算方式。
例5、2000~2002年,我国国内生产总值年平均增长7、8%左右、按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。
练习:
1、一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。
2、某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成()个。
3、我国工农业总产值计划从2000年到2020年翻两番,设平均每年增长率为x,则得方程()。
四、小结:
1、指数函数模型的建立;
2、单利与复利;
3、用图象近似求解。
五、作业:
课本P71—10,16题。
教学目标:
1.理解正数的分数指数幂的含义,了解正数的实数指数幂的意义;
2.掌握有理数指数幂的运算*质,会进行根式与分数指数幂的相互转化,灵活运用乘法公式幂的运算法则进行有理数指数幂的运算和化简.
教学重点:
分数指数幂的含义及有理数指数幂的运算和化简.
教学难点:
分数指数幂含义的理解;有理数指数幂的运算和化简.
教学过程:
一、情景设置
1.复习回顾:说出下列各式的意义,并说出其结果
(1) (2)
(3)(4)
2.情境问题:将25,24推广到一般情况有:
(1)当为偶数时,;(2)当为n的倍数时,.
如果将表示成2s的形式,s的最合适的数值是多少呢?
二、数学建构
1.正数的正分数指数幂的意义:()
2.正数的负分数指数幂的意义:()
3.有理数指数幂的运算法则:
, ,
三、数学应用
(一)例题:
1.求值:(1);(2);(3)(4)
2.用分数指数幂的形式表示下列各式(式中a>0)
(1);(2);
(3)(4)
小结:有理数指数幂的运算*质.
3.化简:;
4.化简:(1)
(2).
5.已知求的值.
(二)练习:化简下列各式:
1.;
2.;
3.(a>0,b>0)
4.当时,求的值
四、小结:
1.分数指数幂的意义;
2.有理数指数幂的运算*质;
3.整式运算律及乘法公式在分数指数幂运算中仍适用;
4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂.
五、作业:
课本p63习题3.1(1)2,4,5.
指数与指数幂的运算 第一课:根式 探究新知(一) 1.问题探究: (1)如果 ,那么 就是4的 ;如果 ,那么3就是27的 。 (2)如果 ,那么 叫做 的 ;如果 ,那么 叫做 的 ; 如果 ,那么 叫做 的 。 (3)类比以上结论,一般地,如果 ,那么 叫做 的 。 2.新知: 次方根的定义: 探究新知(二) 1.问题探究: 计算:1)64的3次方根;-32的.5次方根。 2)4的2次方根;16的4次方根;-81的4次方根。 3)0的 次方根。 2.新知:1 次方根的性质和表示: 2根式的定义: 3.理解新知: 成立的条件是: 探究新知(三) 1.问题探究 (1)根式 表示什么含义? (2)等式 是否成立?试举例说明。 2.新知:总结常用等式: 新知应用: 例1.必修1课本第50页例1 变式练习:1若将例1(4)中的条件( ) 改为( ),结果是 2若将例1(4)中的条件( )去掉,结果是 。 例2. 若 . 例3. 计算 课堂小结: 1.知识收获: 2.方法收获: 3.思维收获: 当堂检测: 1. ( ) 2. ( ) 3.116的4次方根是 ;2-128的7次方根是 . 4.求值: ; 5.若 有意义,则 的取值范围是
教学目标:
1.理解 次方根和 次根式的概念及其性质,能根据性质进行简单的根式计算.
2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.
教学重点难点:
重点是 次方根的概念及其取值规律.
难点是 次方根的概念及其运算根据的研究.
教学用具:投影仪
教学方法:启发探索式.
教学过程:
一. 复习引入
今天我们将学习新的一节指数.指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.
下面从我们熟悉的指数的复习开始.能举一个具体的指数运算的例子吗?
以 为例,是指数运算要求学生指明各部分的名称,其中2称为底数,4为指数, 称为幂.
教师还可引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义. .然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出 及 ,同时追问这里 的由来.最后将三条放在一起,用投影仪打出整数指数幂的概念
2.5指数(板书)
1. 关于整数指数幂的复习
(1) 概念
既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数指数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:
(2) 运算性质: ; ; .
复习后直接提出新课题,今天在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,如果指数推广到分指数会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.
2. 根式(板书)
我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.
如
如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即 ,求?
问题也就是: 谁的平方是16 ,大家都能回答是4和-4,这就是开方运算,且4和-4 有个名字叫16的平方根.
再如
知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.
(根据情况教师可再适当举几个例子,如 ,要求学生用语言描述式子的含义,I再说出结果分别为 和-2,同时指出它们分别称为9的四次方根和-8的立方根)
在以上几个式子会解释的基础上,提出 即一个数的 次方等于 ,求这个数,即开 次方,那么这个数叫做 的 次方根.
(1) 次方根的定义:如果一个数的 次方等于 ( ,那么这个数叫做 的 次方根.
(板书)
对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.
由学生翻译为:若 ( ,则 叫做 的 次方根.(把它补在定义的后面)
翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的 的 次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对 的 次方根的取值规律的研究.
(2) 的` 次方根的取值规律: (板书)
先让学生看到 的 次方根的个数是由 的奇偶性决定的,所以应对 分奇偶情况讨论
当 为奇数时,再问学生 的 次方根是个什么样的数,与谁有关,再提出对 的正负的讨论,从而明确分类讨论的标准,按 的正负分为三种情况.
Ⅰ当 为奇数时
, 的 次方根为一个正数;
, 的 次方根为一个负数;
, 的 次方根为零. (板书)
当奇数情况讨论完之后,再用几个具体例子辅助说明 为偶数时的结论,再由学生总结归纳
Ⅱ当 为偶数时
, 的 次方根为两个互为相反数的数;
, 的 次方根不存在;
, 的 次方根为零.
对于这个规律的总结,还可以先看 的正负,再分 的奇偶,换个角度加深理解.
有了这个规律之后,就可以用准确的数学符号去描述 次方根了.
(3) 的 次方根的符号表示 (板书)
可由学生试说一说,若学生说不好,教师可与学生一起总结,当 为奇数时,由于无论 为何值, 次方根都只有一个值,可用统一的符号 表示,此时要求学生解释符号的含义: 为正数,则 为一个确定的正数, 为负数, 则 为一个确定的负数, 为零,则 为零.
当 为偶数时, 为正数时,有两个值,而 只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成 ,其含义为 为偶数时,正数的 次方根有两个分别为 和 .
为了加深对符号的认识,还可以提出这样的问题: 一定表示一个正数吗? 中的 一定是正数或非负数吗?让学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结 .对于符号 ,当 为偶数是,它有意义的条件是 ;当 为奇数时,它有意义的条件时 .
把 称为根式,其中 为根指数, 叫做被开方数.(板书)
(4) 根式运算的依据 (板书)
由于 是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.
如 应该得什么?有学生讲出理由,根据 次方根的定义,可得Ⅰ = .(板书)
再问: 应该得什么?也得 吗?
若学生想不清楚,可用具体例子提示学生,如 吗? 吗?让学生能发现结果与 有关,从而得到Ⅱ = .(板书)
为进一步熟悉这个运算依据,下面通过练习来体会一下.
三.巩固练习
例1. 求值
(1) . (2) .
(3) . (4) .
(5) .(
要求学生口答,并说出简要步骤.
四.小结
1. 次方根与 次根式的概念
2.二者的区别
3.运算依据
五.作业 略
六.板书设计
2.5指数 (2)取值规律 (4)运算依据
1. 复习
2. 根式 (3)符号表示 例1
(1)定义
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号