日期:2022-02-10
这是整式的加减教学设计,是优秀的数学教案文章,供老师家长们参考学习。
【教学内容】: 整式的加减---同类项与合并同类项
四屯中学 郭慧蓉
【教学目标】:
1.理解同类项与合并同类项的概念,掌握合并同类项的方法并能正确合并同类项,能先合并同类项化简后求值。
2.渗透分类和类比的思想方法。
3.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
【教学重点】:会找同类项并能正确合并同类项。
【教学难点】:多字母同类项的合并。
【教学过程】:
一、知识回望、预习检查、明确学习目标、导入新课:
1.运用有理数的运算律(逆用乘法对加法的分配律)计算:
(1)100×2+252×2=__________,(2)100×(-2)+252×(-2)=__________,
(3)100t+252t=__________,
2.请根据上面得到结论的方法探究下面各式的结果:
(1)100t—252t=( )t (2)3x2 + 2 x2 = ( ) x2
(3)3ab2 - 4 ab2 = ( ) ab2
观察:100t和252t ;3x2 和 2 x2 ; 3ab2 与 -4 ab2 在结构上有哪些相同点和不同点? 同类项的定义:
归纳:_______________________________________________叫做同类项;
____________________也是同类项。如3和-5是同类项。
3.游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
上述运算有什么共同特点?
二、分组讨论、探究新知:
(学生分组讨论、交叉点评 ;老师设问引导、点拨疑难)
1.观察上面2题运算过程,讨论:具备什么特点的单项式可以合并呢?
因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,
4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)
= (交换律)
= (结合律)
= (分配律)
=
把多项式中的( )合并成一项,叫做合并同类项.
2. 讨论交流: 合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
归纳:
(1)合并同类项法则:在合并同类项时,把( )相加,( )保持不变。
(2) 若两个同类项的系数互为相反数,则两项的和等于( )
如-3ab2+3ab2=(-3+3)ab2=0·ab2=0。
注: 多项式中只有同类项才能合并,不是同类项不能合并。
3.试一试:
(1)合并下列各式的同类项:
①xy2-5xy2; ②-3x2y+2x2y+3xy2-2xy2;
(2)求多项式3a+abc-2c2-3a+2c2的值,其中a=-1,b=2,c=-3。
4.实际问题:(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x千克。上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
学生思考、小组交流,寻求解答思路.
三、课堂小结:
学生谈本节课的收获,老师指出本节课容易出现的错误。
四、课堂检测、及时反馈:
1.合并同类项:4a2+3b2+2ab-4a2-4b2
2.求多项式2x2-5x+x2 +4x-3x2 - 2的值,其中x=0.5。
五、拓展提高、分层巩固:
必做题:课本P66页,练习第1、2、:课本P71页,1题
选做题:1.课本P66页,练习第3题.
【板书设计】:
2.2 整式的加减
---同类项与合并同类项
1.同类项:_____________________________________叫做同类项;
___________也是同类项。
2.合并同类项:把多项式中的( )合并成一项,叫做合并同类项.
3.合并同类项法则:在合并同类项时,把( )相加,( )保持不
变。
4.(实际问题)
【学习目标】
了解同类项,合并同类项的概念,掌握合并同类项法则,能正确合并同类项.
能先合并同类项化简后求值.
培养观察,探究,分类,归纳等能力,养成良好的学习习惯.
【学习重点,难点】
重点:掌握合并同类项法则,熟练地合并同类项.
难点:多字母同类项的合并
【知识链接】(约1分)
有理数可以进行加减计算,那么整式能否进行加减计算呢?怎样化简呢?请看本章引言中的问题(2),青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时.如果列车通过冻土地段的时间t小时,通过非冻土地段的时间为2.1t小时,则这段铁路全长是__________ 千米. 类比数的运算,我们如何化简式子100t+252t呢?这节课我们来学习整式的加减.
【学习过程】
一、自主学习(约5分)
认真自学课本p62-65 内容,独立完成p62的探究.
思路导航:课本p62探究(2),100t+252t=________, 100t表示100XXXXXt,252表示252XXXXXt请用乘法的分配律完成填空.
二、问题探究(约5分)
1.填空:(1)100t-252t=( )t (2)3x2+2x2=( )x2
(3)3ab2-4ab2=( )ab2
2.观察上述的三个多项式,他们都可以合并为一个单项式,那么具备什么特点的多项式可以合并呢?可结对子交流.
3.像这样,所含字母相同,并且相同字母的指数也相同的项叫做________ ,几个常数项也是________.
三、合作交流(约5分)
1.对上述问题中的困惑地方小组交流解决,必要时教师指导.
2..下列各组是不是同类项:
(1)a与b (2)x与x2
(3) 0.5x2y 与 0.2xy2 (4)4abc与 4ab
(5)-5m2n3与2n3m2
(6)7xnyn+1与-3xnyn+1 (7)100与
思路点拨:根据同类项定义进行判断,同类项应所含字母相同,并且相同字母的指数也相同.二者缺一不可,与其系数无关,与其字母顺序无关.
2.因为多项式中的字母表示的是数,所以我们可以运用交换律,结合律,分配律把多项式中的同类项合并.例如:
4x2+3x+9+5x-6x2+7 ( 找出同类项)
=(4x2-6x2)+(3x+5x)+(9+7) (交换律与结合律)
=(4-6)x2+(3+5)x+16(分配律)
=-2x2+8x+16
像这样,把多项式中的__________合并成一项,叫做合并同类项.
3.议一议:合并同类项前后的项的系数,字母以及字母的指数,有何变化?与同伴交流后,归纳出合并同类项法则:________________________________
四、精讲点拨(约4分)
合并同类项的实质是乘法分配律的逆用. 如 (2+3)a=2a+3a ,反过来就是2a+3a=(2+3)a
2.若两个同类项互为相反数,则合并同类项的结果为0.
3.注意各项系数应包括它前面的符号,尤其是系数为负数时,不要遗漏负号,同时注意不要丢项.
4.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或从小到大(升幂)的顺序排列.
五、能力提升(约10分)
1.认真自学课本p64例题,对遇到的困惑问题可上台展示解疑..
2.合并下列各式的同类项.(模仿课本p64例1)
(1)-7m2n+5m2n (2) 3a2b-4ab2-4+5a2b+2ab2+7
3.求多项式3x2-8x+2x3-13x2+2x-2x3+3的值,其中x=- (模仿课本p64例2的解题步骤)
思路点拨:在求多项式的值时,可以先合并同类项,再求值,这样可以简化计算.合并时,特别注意系数是负数的情况,规范书写格式.代入字母给定的值时,必要时要正确使用括号,否则易发生错误.
3.认真阅读课本p65 例3,根据思路导航完成此题.
思路导航:例3中(1)水位上升量与水位下降量是具有相反意义的两个量,我们可以把下降的水位量记为负,上升的水位量记为正,那么第一天水位的变化量为________cm ,第二天水位的变化量为__________cm,两天水位的总变化量为________ =________________.
(2)把进货的数量记为正,售出的数量记为负. 故进货后这个商店共有大米________________=___________
六、课堂小结(约2分)
1.__________________________________________叫做同类项.
2.字母相同,次数也相同的项_________ 是同类项.(填“一定”或“不一定” )
3. ______________________________________叫合并同类项.
4.合并同类项的法则:______________________________________
我的收获: 我的困惑:
【达标测评】(约8分)1.课本p65练习,可酌情处理.
2.如果5x2y与xmyn是同类项,那么m= ____,n=______
3.当k=______时,多项式x2-3kxy+9xy-8中不含xy项.
4.求多项式2(x-2y)2-4(2x-y)+(x-2y)2-3(2x-y)的值,其中x=-1, y=[提示:分别把(x-2y) (2x-y)看作一个整体.]
【课后作业】
必做题:课本 p69,第1 题
【教学目标】
1、理解同类项、合并同类项的概念。
2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3、感受其中的'“数式通性”和类比的数学思想。
【教学重点】
理解同类项的概念;掌握合并同类项法则。
【教学难点】
正确运用法则及运算律合并同类项。
【教学过程】
一、知识链接
1、运用运算律计算下列各题。
①6×20+3×20= ②6×(-20)+3×(-20)=
2、口答。
8个人+5个人= 8只羊+5只羊=
8个人+5只羊=
[意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]
二、探究新知
探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?
(1)请列式表示: ,你能对上式进行化简计算吗?
(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]
探究二:根据以上式子的运算,化简下列式子。
①100t-252t ②3x2+2x2
②3ab2-4ab2 ④2m2n3-5m2n3
(1)上述各多项式的项有什么共同特点?
(2)上述多项式的运算有什么共同特点,有何规律?
[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]
三、例题精炼
例1、合并同类项。
4x2+2x+7+3x-8x2-2
例2、求多项式-x2+4x+5x2-3x-4x2+3的值,其中x= 。
[意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]
四、课堂小结
这节课你学到了哪些知识?
[意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]
五、课堂检测(略)
[意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]
教学目标
1.知识与技能:掌握去括号法则,运用法则,能按要求正确去括号.
2.过程与方法:通过去括号法则的推导,培养学生观察能力和归纳能力;通过去括号法则的应用,培养学生全方位考虑问题的能力.
3.情感态度与价值观:让学生体验在数学学习活动中充满了探索与创造,在探索中学会与人合作、交流,在探索中体验成功的快乐.
教学重点
本节课的重点是去括号法则及其应用.
教学难点
点是括号前面是“—”号,去括号时括号内各项要变号的理解及应用.
教学准备
多媒体课件
教学过程
一.创设情景,激活思维
1.根据题意,列代数式
① 周三下午,校阅览室内起初有a 名同学.后来某班级组织同学阅读,第一批来了b 位同学,第二批来了c 位同学.则阅览室内共有多少同学?你能用两个代数式表示吗?
② 若阅览室内原有 a名同学,后来有些同学因上课要离开,第一批走了b 位同学,第二批走了c 位同学.试用两种方式写出阅览室内还剩下的同学数.
(点评:选取了学生熟悉的教学资源为背景,提出问题,引入新课,调动学生的学习积极性.)
二.积极探索,活跃思维
1.观察上面①中的两个代数式,它们的'运算顺序一样吗?结果一样吗?②中的两个代数式呢?试用数学语言表示你的发现.
2.请同学们思考一下,你周围还有没有与问题①和②相仿的问题,把它提出来.(点评:在得出a+(b+c) =a+b+c和 a-(b+c) =a-b-c后,并不是按惯例马上就引导推出去括号的法则,而是继续让学生提出类似的问题,让学生参与进来,感受并理解去括号法则.)
例如本章引言中的问题:
(1)+120(t-0.5)=+120t-60
(2)-120(t-0.5)=-120t+60
3.再请大家观察 a+(b+c) =a+b+c和a-(b+c) =a-b-c 这两个式子,它们有什么特点?
4.由上面的分析探索,体会应该如何去括号?试用文字语言表达你的结论.
(点评:通过让学生自主探究,体验新知的产生过程,由感性认识上升到理性认识.)
概括:去括号法则:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
三.典型例题,知识迁移
例题1
(1)a+(b-c) (2)a-(b-c)
(3)a+(-b-c) (4)a-(-b-c)
(点评:应用新知,解决问题,突出学生自主学习.)
例题2.化简下列各式:
(1)8a+2b+(5a-b);??
(2)(5a-3b)-3(a2 -2b).
(点评:应用新知——去括号,同时复习旧知——合并同类项,在解决问题的过程中为后面“整式的加减”埋下伏笔.突出学生自主学习.)
例题3两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
注意:顺水速度=静水速度+水速
逆水速度=静水速度-水速
解:(1)2小时后两船相距:
2(50+a)+2(50-a)=100+2a+100-2a=200(千米
(2)2小时后甲船比乙船多航行
2(50+a)-2(50-a)=100+2a-100+2a=4a(千米)
四.巩固提高,体验成功
练习:课本67页1,2
五.课堂小结
今天你有哪些收获?
六.作业设计
课本第70页 1、 2.2 3,4,5?? 2、选做课本70页 2.2? 7,8
课后反思
去括号这节内容,看似容易,实际上是学生最易出错的地方.整式的加减与有理数运算中,学生最容易搞错的地方就是括号和符号.在去括号这节内容的教学中,教师决不能疏忽大意.
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号