日期:2022-02-10
这是整式教案设计,是优秀的数学教案文章,供老师家长们参考学习。
第一章 整式的运算
一、值得讨论的问题:
1、符号感的含义是什么?如何培养学生的符号感?
符号感主要表现在“能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题”。
2、如何理解基本技能?
基本技能包括运算能力、阅读能力、探索能力、理解能力、归纳能力、类比能力等。
3、如何进行评价?
注重对学生从具体问题中抽象出数量关系以及探索运算法则等过程的评价。一是学生在具体活动中的投入程度,二是学生在活动中的水平。
对知识技能的评价应关注学生对整式运算法则的理解和运用,以及学生基本运算技能的形成。对知识技能的评价应当更多地关注对其本身意义的理解和在新情境中的应用,而不仅仅是记忆和使用的熟练程度。
二、本章总的教学目标、设计思路、课时安排、教学建议、评价建议详见七年级下册教学参考第1、2、3页。
本章在呈现形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。教学中要注意:
1、注重使学生经历用字母表示数量关系的过程,进一步发展符号感。
2、以 “观察——归纳——类比猜想——概括”
为主线索呈现运算法则的探索过程, 注重对运算法则的探索过程以及对算理的理解,发展有条理的思考与表达。
3、注重在代数学习中发展学生的推理能力,培养表达能力。
4、保证基本的运算技能,避免繁杂的运算。
理解多项式除以单项式的运算法则,并能用法则进行计算。
2.1整式(1) 教学目标 1使学生理解、掌握单项式的有关概念,能准确地说出给定单项式的系数和次数; 2初步培养学生的观察——分析和归纳——概括能力,使学生初步认识特殊与一般的辩证关系 教学重点和难点 重点:单项式的定义;单项式的系数和次数 难点:单项式的系数和次数 课堂教学过程设计 一、 提出问题,引入“单项式”概念 1、青藏铁路线上,在格尔木到拉萨之间有一段冻土地段,列车在冻土地段的行使速度可以达到 100千米/时,在非冻土地段可以达到120千米/时,请根据这些数据回答问题:列车在冻土地段行驶时: (1)2小时能行驶多少千米? (2)3小时呢? (3)t小时呢? 答案:(1)100× 2=200 (2)100× 3=300 (3)v× t=vt 2、用含有字母的式子填空 (1)若边长为a的正方形的周长为____ _,面积为___ __. (2)铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是________元. (3)一辆汽车的速度是v千米/时,它t小时行驶的路程是______千米 (4)数n的相反数是_______. 答案:(1)4a,a2; (2)ab; (3)-n 2、提出问题:以上几个代数式有什么共同特征? 引导学生对上述几个代数式进行观察、分析,让他们自己得出以下结论:4a表示的是数字4与字母a的.乘积;a2表示字母a与a的乘积;ab表示字母a与b的乘积;-n表示数字-1与字母n的乘积,象这样的式子我们叫做单项式,这就是我们今天所要学习的一种最简单式子————单项式. 二、新知识讲授 1、定义:由数或字母的乘积组成的式子叫做单项式 单独一个数或一个字母也叫单项式. 练习 指出下列代数式中,哪些是单项式: 2xy,-4x, a+ b, ,,m,-,-ab 此练习让学生回答,通过此练习,一方面巩固刚刚学过的单项式定义,另一方面是让学生逐步学习如何应用定义去判断“是”或“不是” 答案:2xy,-4x,,,m,-,-ab 2、单项式的系数 在刚才的练习中,单项式 2xy,-4x, ,-,m,-ab 的数字因数分别是几? 待学生逐一弄清以上几个单项式的数字因数后,教师指出“这些数字因数称为单项式的系数”然后,让学生自己说出什么叫单项式的系数 定义:单项式中的数字因数,叫做单项式的系数 练习 指出以下单项式的系数: 3x2,- x2y2z,a2b,-2.15ab3,-m3,0.12h. 在学生回答的基础上,教师指出,单项式的数字因数即为“系数”,要特别注意“系数”必须包括前面的“+”或“-”号,另外,当系数是“1”时,通常省略不写;系数是“-1”时,只写“-”就可以了 本练习答案:3,-,1,-215,-1,012 3单项式的次数 以单项式- x3y2z为例,我们称“- ”为它的系数,让我们再考察一下这个单项式中的字母因数,有x3,y2,zx,y,z的指数分别是3,2,1,称这几个数的和6为这个单项式的次数 定义:一个单项式中,所有字母的指数的和,叫做这个单页式的次数练习 指出下列单项式的次数: 3x2,- x2y2z,a2b,-2.15ab3,-m3,0.12h. 在此练习中,通过具体的单项式,使学生对定义中的“所有”、“指数的和”等关键词语引起注意 本练习答案:2,5,3,4,3,1 三、进一步巩固新知识 1、P55 例1 2、P56练习第1题填表 学生填,对答案 四、小结 1今天这节课我们学习了哪一类代数式?(单项式) 关于单项式,我们又学习了什么?(定义、系数、次数) 2在单项式的定义中,提到了“单独一个数,也叫单项式”,也就是说,以前我们所学过的有理数,都属于单项式,可见,有理数是特殊的单项式 五、作业 1下列代数式中,哪些是单项式?若是单项式请指出其系数和次数abc,-2x3,x+y,-m,3x2+4x-2,xy- a,x4+x2y2+y4,a2-ab+b, πR2,3ab2 P59习题2.1的第1题 2 练习册
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1 (P166例1)
求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的`和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-( x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
整式的加减(1)
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1 (P166例1)
求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-( x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
数学教案-整式的加减(1)
1.列代数式
(1)若边长为a的正方体的表面积为________,体积为;
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,圆珠笔的单价是_____元(3)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;
(4)设n是一个数,则它的相反数是________.
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.请学生说出所列代数式的意义。
(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)
(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)
二、新授内容
1、单项式
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_____与______的乘积组成的代数式称为单项式。
补充:单独_________或___________也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
解:是单项式的有(填序号):________________________
七年级数学《整式》教案设计大全四
【教学习目标】
一、知识与技能
(1)能用代数式表示实际问题中的数量关系.
(2)理解单项式、单项式的次数 ,系数等概念,会指出单项式的次数和系数.
讲授法、谈话法、讨论法。
【教学重点】
单项式的有关概念
【教学难点】
负系数的确定以及准确确定一个单项式的次数
【课前准备】
教师准备教学用课件。
【教学过程】
一、新课引入
教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:
1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
(2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1倍,如果通过冻土地段所需要t小时,能用含t的式子表示这段铁路的全长吗?
(3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通 过冻土地段需要u小时,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少千米?
分析:(1)根据速度、时间和路程 之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米).
(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米).
(3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米.
思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式.
上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.
kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题.
用含有字母的式子填空,看看列出的式子有什么特点.
(1)边长为a的正方体的表面积为______,体积为_______.
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元.
(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.
(4)数n的相反数是_______.
教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流.
上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.
观察上面各式中运算有什么共同特点?
上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数 或一个字母也是单项式.如: -2,a, ,都是单项式,而 ,1+x都不是单项.
单项式中的数字因数叫做这个单项式的系数,例如: 6a2的 系数是6,a3的系数是1,-n的系数是-1,- 的系数是- .
单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式 的系数是1或-1时通常省略不写.
一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号