当前位置:首页 > 教案教学设计 > 数学教案

有理数的认识教案

日期:2022-02-12

这是有理数的认识教案,是优秀的数学教案文章,供老师家长们参考学习。

有理数的认识教案

有理数的认识教案第 1 篇

  有理数的乘方教学目标:

  知识与能力:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算。

  过程与方法:培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想。

  情感态度与价值观:培养学生勤思,认真,勇于探索的精神,并联系实际,加强理解,体会数学给我们的生活带来的便利。

  教学重点:正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。

  教学难点:正确理解乘方、底数、指数的概念并合理运算。

  教材分析:本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,然后,结合有理数乘方的运算,讲述了乘方的运算方法。跟这部分内容有关联的是后面“科学计数法”、“有理数的混合运算”等部分内容。

  教学方法:

  教法:引导探索法、尝试指导法,充分体现学生主体地位;

  学法:学生观察思考,自主探索,合作交流。

  教学用具:电脑多媒体。

  课时安排:一课时。

  教学过程:教学环节、教师活动、学生活动、设计意图。

  创设情境:(出示珠穆朗玛峰图片)

  引语:同学们,珠穆朗玛峰高吗?对,它的海拔有8848千米,可是将一张纸连续对折30次,会有12个珠穆朗玛峰高,你们感觉神奇吗?就让我们带着这份神奇走进数学课堂。要求学生折纸试验,对折一次变成了几层?对折2次变成了几层?连续对折30次,应该列一个怎样的算式?对折100次呢?如果把这些式子写出来,太麻烦,下面咱们一起来认识一位数学新朋友,相信他能帮你解决这个难题。

  板书课题:拿出课前准备好的纸,每个学生都试验一下,思考回答问题。激情导入,激发学生的求知欲。

  揭示学习目标:电脑展示学习目标、学生感悟、使学生了解本节学习内容。

  学生自学:请大家认真自读课本71-72页,思考下列问题。约六分钟后,同桌或前后桌同学围绕疑难问题,讨论交流,比谁的自学能力强,自学效率高。

  电脑展示:

  1.了解有理数乘方的概念。

  2.理解幂,指数,底数。

  3.一个数本身可以看作这个数本身的次方。

  4. (-a)n与-an一样吗?为什么?

  电脑展示:

  1.把下列各式写成乘方的形式,并指出底数和指数。

  (-3)×(-3)×(-3)×(-3)

  -2×2× 2×2×2×2×2

  2.你自己能找到同样的例子吗?

  3.计算:(–2)³ (–13 )³ -26

  学生积极思考,相互交流讨论,让不同层次的学生发言。此组练习具有梯度性,可调动不同层次学生的积极性。

  完成下列计算:

  2² 2³ 24 25

  (-2)² (-2)³ (-2)4 (-2)5

  观察计算结,想一想:正数幂的符号与指数有何关系?负数幂的符号与指数有何关系?

  学生对计算结果进行分析相互交流得出结论,把问题再次交给学生,充分发挥学生的主观能动性,培养学生归纳、总结的能力。

  学生做作业。

  教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学模式。整个教学过程从思考问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、思考、交流归纳的能力。不足之处:在练习的讲评上,应给学生一个较为自由的空间,让学生相互启发,相互交流。

有理数的认识教案第 2 篇

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.数学思考 通过观察,比较,归纳等得出有理数加法法则。

3.解决问题 能运用有理数加法法则解决实际问题。

4.情感与态度 认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5.重点 会用有理数加法法则进行运算.

6.难点 异号两数相加的法则.

二.教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三.学校与学生情况分析

冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四.教学过程

(一)问题与情境 我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为 4+(-2), 黄队的净胜球为 1+(-1)。 这里用到正数与负数的加法。

(二)、师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法. 两个有理数相加,有多少种不同的情形? 为此,我们来看一个大家熟悉的实际问题: 足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是 (+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是 (-2)+(-1)=-3. 现在,请同学们说出其他可能的情形. 答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是 (+3)+(-2)=+1; 上半场输了3球,下半场赢了2球,全场输了1球,也就是 (-3)+(+2)=-1; 上半场赢了3球下半场不输不赢,全场仍赢3球,也就是 (+3)+0=+3; 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是 (-2)+0=-2; 上半场打平,下半场也打平,全场仍是平局,也就是 0+0=0. 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算? 这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)、应用举例 变式练习

例1 口答下列算式的结果 (1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4); (5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0. 学生逐题口答后,师生共同得出 进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的`符号,再计算“和”的绝对值. 例2(教科书的例1) 解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算) =-(3+9) (和取负号,把绝对值相加) =-12. (2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算) =-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值) =-0.8 例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数 下面请同学们计算下列各题以及教科书第23页练习第1与第2题 (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9); 学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)、小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)练习设计

1.计算: (1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9); (5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.

2.计算: (1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3; (4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31); (7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

4.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0; (3)如果a>0,b<0,|a|>|b|,那么a+b ______0; (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

五.教学反思

“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计. 现在,试比较这两类教学设计的得失利弊. 第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好. 第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法. 这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

六.点评

潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。

有理数的认识教案第 3 篇

1教学目标

知识与技能:

1.说出有理数的意义。

2.把给出的有理数按要求分类。

3.说出数0在有理数分类中的作用。

过程与方法:

树立对数分类讨论的观点并发展正确地进行分类的能力。

情感、态度与价值观:

通过有理数的分类,感受数学对称美。

2学情分析

学生的学习成绩较低,学习习惯不是很好,学习的主动性不强,学习的方法不得力。能称的上是优秀的学生不到十分之一,学习困难的学生数量很大,加之大部分学生的心思不在学习上,整天无所事事,上课不认真听讲,下课照抄别人的作业,星期天的作业不能认真完成,空档时间打闹,不能静下心来复习功课,教师多上两节空堂课还满有意见,情况不容乐观。

3重点难点

重点:有理数包括哪些数。

难点:有理数的分类。

4教学过程 4.1第一学时 教学活动 活动1【导入】复习导入

1.把下列各数填入相应的大括号内:

+6, -22/3,3.8,0,-4,-6.2,+23/3 ,-3.8,

正数集合:

负数集合:

2.填空:

(1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________。

(2)如果规定+20表示收入20元,那么-10元表示______________。

(3)如果由 地向南走3千米用3千米表示,那么-5千米表示____________________,在 地不动记作__________________。

【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。

师:在小学大家学过1,2,3,4……这是什么数呢?

生:自然数。

师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?

生:负数。

师:具体叫什么负数呢?

师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。

【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。

活动2【讲授】探索新知,讲授新课

1.分类数的名称

1,2,3,4……叫做正整数;

-1,-2,-3,-4……叫做负整数。

0叫做零。

正整数、负整数和零统称为整数。

正分数和负分数统称为分数。

整数和分数统称有理数。

【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。

提出问题:巩固概念

(出示投影2)

(1)0是整数吗?是正数吗?是有理数吗?

(2)-5是整数吗?是负数吗?是有理数吗?

(3)自然数是整数吗?是正数吗?是有理数吗?

【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。

注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。

2.有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:

(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类

尝试反馈,巩固练习

(出示投影3)

下列有理数中:-7,10.1,89,0,-0.67,

哪些是整数?哪些是分数?哪些是正数?哪些是负数?

学生思考,然后找同学逐一回答.其他同学准备补充或纠正。

【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。

3.数的集合

我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

活动3【讲授】变式训练,培养能力

(1)把有理数6.4,-9, 2/3,+10, -3/4,-0.021,-1,22/3 ,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

正整数集合 ,负整数集合

正分数集合 ,负分数集合

(2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的集合:

整数集合 ,分数集合

正数集合 ,负数集合

【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。

活动4【讲授】归纳小结

师:今天我们一起学习了哪些内容?

由学生自己小结,然后教师再总结:

今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。

【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。

活动5【测试】反馈检测

(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。

(2)把下列各数填入相应集合的持号内:

-3,4,-0.5,0,8.6,-7

整数集合 ,分数集合

正有理数集合 ,负分数集合

(4)选择题:-100不是( )

A.有理数; B.自然数; C.整数; D.负有理数。

以小组为单位计分,积分最高的组为优胜组.

【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

活动6【作业】布置作业

思考题:把下列各数填在相应的集合中

3.14,-5,0,7/3 ,89,-2.67, -31/4,pai, +1001

有理数集合:

非负有理数集合:

负有理数集合:

1.2 有理数

课时设计 课堂实录

1.2 有理数

1第一学时 教学活动 活动1【导入】复习导入

1.把下列各数填入相应的大括号内:

+6, -22/3,3.8,0,-4,-6.2,+23/3 ,-3.8,

正数集合:

负数集合:

2.填空:

(1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________。

(2)如果规定+20表示收入20元,那么-10元表示______________。

(3)如果由 地向南走3千米用3千米表示,那么-5千米表示____________________,在 地不动记作__________________。

【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。

师:在小学大家学过1,2,3,4……这是什么数呢?

生:自然数。

师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?

生:负数。

师:具体叫什么负数呢?

师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。

【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。

活动2【讲授】探索新知,讲授新课

1.分类数的名称

1,2,3,4……叫做正整数;

-1,-2,-3,-4……叫做负整数。

0叫做零。

正整数、负整数和零统称为整数。

正分数和负分数统称为分数。

整数和分数统称有理数。

【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。

提出问题:巩固概念

(出示投影2)

(1)0是整数吗?是正数吗?是有理数吗?

(2)-5是整数吗?是负数吗?是有理数吗?

(3)自然数是整数吗?是正数吗?是有理数吗?

【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。

注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。

2.有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:

(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类

尝试反馈,巩固练习

(出示投影3)

下列有理数中:-7,10.1,89,0,-0.67,

哪些是整数?哪些是分数?哪些是正数?哪些是负数?

学生思考,然后找同学逐一回答.其他同学准备补充或纠正。

【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。

3.数的集合

我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

活动3【讲授】变式训练,培养能力

(1)把有理数6.4,-9, 2/3,+10, -3/4,-0.021,-1,22/3 ,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

正整数集合 ,负整数集合

正分数集合 ,负分数集合

(2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的集合:

整数集合 ,分数集合

正数集合 ,负数集合

【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。

活动4【讲授】归纳小结

师:今天我们一起学习了哪些内容?

由学生自己小结,然后教师再总结:

今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。

【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。

活动5【测试】反馈检测

(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。

(2)把下列各数填入相应集合的持号内:

-3,4,-0.5,0,8.6,-7

整数集合 ,分数集合

正有理数集合 ,负分数集合

(4)选择题:-100不是( )

A.有理数; B.自然数; C.整数; D.负有理数。

以小组为单位计分,积分最高的组为优胜组.

【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

活动6【作业】布置作业

思考题:把下列各数填在相应的集合中

3.14,-5,0,7/3 ,89,-2.67, -31/4,pai, +1001

有理数集合:

非负有理数集合:

负有理数集合:

有理数的认识教案第 4 篇

  一、 教学内容分析

  这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

  定 义 规定了原点、正方向、单位长度的直线叫数轴

  三要素 原 点 正方向 单位长度

  应 用 数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零.具体方法如下

  (边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的'方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?

  原点向左1.5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3).画出数轴并表示下列有理数:

  1、1.5,-2.2,-2.5, ,,0.

  2.写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念.

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  十二、课后练习 习题1.2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号