当前位置:首页 > 教案教学设计 > 数学教案

比例的意义优秀教案人教版

日期:2022-02-13

这是比例的意义优秀教案人教版,是优秀的数学教案文章,供老师家长们参考学习。

比例的意义优秀教案人教版

比例的意义优秀教案人教版第 1 篇

教学内容:教科书第40页例1及相关内容

教学目标:

知识技能:使学生在具体情境中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。

数学思考:使学生经历观察、比较、判断、归纳等活动,深化对概念的理解。

问题解决:使学生感受数学知识的内在联系,学会综合运用所学知识,增强分析问题和解决问题的能力。

情感态度:培养学生进行初步的观察、分析、概括能力,发展学生的思维,培养学生学习数学的兴趣。

教学重点:在具体情境中理解比例的意义。

教学难点:运用比例的意义判断两个比能否组成比例,并能正确组成比例。

教学准备:教学课件。

教学过程:

(一)创设情境,引出课题

(大屏幕出示一张天安门广场升国旗)

师情境创设:同学们,老师假期中外出正好赶上了一个特别激动人心的场景,想知道是什么场景吗?(生答想,教师大屏幕展示照片,但是特别小,学生说看不清)这时教师放大图片,但只放大长,把照片拉变形,学生还说看不清;然后老师再展示只放大宽的照片,学生还说看不清,最后老师展示按比例放大的照片,这时学生异口同声的回答是升国旗场面。

师:同学们,刚才在老师第三次放大照片的过程中,运用了一个数学知识,这个知识不但能帮助我们不变形的放大和缩小照片,还可以帮助我们解决生活中的许多问题,这个知识就是比例。(板书:比例)

(设计意图:借助图片的放大这一生活情景,让学生初步感知比例就来源于生活,并能解决生活中的问题,由此激发学生学习比例的兴趣和欲望。)

(二)搭建框架,整体感知

提问:看到比例,你都想了解关于它的哪些知识?

生自由回答后,教师大屏幕出示整单元知识框架的思维导图

师:我们这个单元共给我们安排了这些内容,就帮助我们进一步学习你想了解的知识。

师指引学生通过思维导图整体感知本单元的知识,点明这节课要探究的是比例的意义并板书课题。

(设计意图:借助思维导图形式整体感知单元框架,让学生对所学知识有个系统化的认知,避免知识碎片化,有助于发展学生的数学思维。)

(三)复习旧知,搭建桥梁

师:所有的数学知识都是可以借助我们以前学习过的知识来探索得出的,同学们想一想,比例的知识,可能和我们学过的哪部分知识联系紧密?

生答比

师:请同学回顾一下你所掌握的比的知识,和同学们说一说。

学生汇报,教师适时用大屏幕展示比的知识。

(设计意图:“比例”的学习基础是“比”,学生也能从字面上感党到“比例”和“比”有联系的。通过回顾比的知识,为学生探究比例的意义做好铺垫,为探索新知搭建桥梁。)

(四)创设情境,探究新知

1、提出问题,初步感知比例的意义。

(1)师:我们的生活中,像放大照片这样按比例扩大或缩小的现象处处存在。请同学们看大屏幕(大屏幕展示三个不同场景不同大小的国旗)这是三面尺寸不同但形状完全相同的国旗。国旗是我们国家的标志,它的形状是完全不能改变的。那么,国旗是按照什么规格来制作的呢?国旗的长与宽之间是不是存在着什么关系呢?下面就请同学们在自己的练习本上完成屏幕上的第一个要求

大屏幕展示第一个要求:随意选择其中任意两面国旗,写出每一面国旗长与宽的比,然后求出比值,看看有什么发现。

(2)学生自己在练习本上解决问题

(3)分别指名三位同学在黑板上板书三组不同的比,写出比值

(4)全班交流

引导学生说出自己的发现,得出结论:每两面国旗长与宽的比的比值都相同。不同场合用到的国旗大小会不一样,但是长与宽的比是固定的。

(5)师引导得出:因为比值相等,所以可以用等号连接每组的两个比。

(设计意图:教师继续利用情境中的照片,给出数据让学生探究。学生在对数据充分观和分析的过程中,积累宝贵的数学经验,初步感知比例的意义。)

2、丰富情境,理解比例的意义

(1)师:这些国旗长与宽的比存在这样的关系,那么宽与长的比是不是也有这样的关系呢?(学生猜测)我们继续验证一下吧!请同学们完成大屏幕上第二个要求:写出两面国旗宽与长的比,算出比值,看看能不能组成这样的等式?

(2)学生独立思考,在本子上记录找到的相同比值的比,并写成等式。

(3)汇报交流

师:谁来说一说自己的发现?

生答师板书三组等式

(设计意图:概念的建立应该经历从具体到抽象的过程,但这个“具体”不能仅仅局限于一组数据。教师提供国旗情境,给学生提供更为充分的探究和体验的机会,为后续的抽象概括出概念做好铺垫。)

3、冲突设疑,深化理解

师:既然国旗是“按比例”缩放的,那是不是国旗中任意数据组成的比都能构成等式呢?

学生思考

师:老师这里有两个比,它们是否相等?

板书一组比,即天安门国旗长:天安门国旗宽和学校国旗宽:学校国旗长

学生发现不相等

师为什么不相等

生,一个是长:宽,另一个也是长:宽才行。

师:是的,你们已经观察到,在“按比例”缩放时,要注意,只有对应的量之间的比,比才相等,才可以写成这样的等式

(设计意图:形成完整的概念,除了引导学生观察到概念的显性结构特征和数量特征之外,还要帮助学生发现概念的隐性特点。通过引导,学生对比例的意义的内涵和外延都有了较为深入的思考。)

3、讨论交流,抽象归纳比例的概念

(1)请同学们观察黑板上的这些等式,你有什么发现?

请同学们先在小组里说一说,然后全班交流

(2)全班汇报交流,得出结论:全有两个比,两个比的比值相等

(3)教师指出:像这样的式子就是比例。

师:你能用自己的话说说什么是比例吗?

生答:两个比值相等的比写成的等式。

师:两个比要符合什么样的条件就可以成为比例呢?

生答后师(课件呈现):数学书上是这样描述比例的,学生齐读比例的概念。

(设计意图,在学生的讨论与交流中,对比例的概念己经基本建立,完成了由具体到抽象的过程。)

(四)练习巩固,综合运用

1、数字中的比例

师:刚才大家在照片、国旗尺寸中找到了比例。你能不能判断下面四组比能不能组成比例?如果能,请你把它写下来。

(1)6:10和9:15

(2)20:5和1:4

(3)0.6:0.2和3/4:1/4

(4)4:3和2:1.5

学生独立练习,教师巡视。

2、图形中的比例

师:看来要判断两个比能不能组成比例,只要算出它们的比值是否相等就可以了。师(课件将最后一组数据变换成下图):如果第4组比例中对应的数据出自两个三角形。你有什么发现?

顶设:两个三角形底与高的比可以组成比例,这两个三角形形状是一样的。

师:当两个三角形“按比例”缩小或放大时,它们的形状不变

请学生写出对应数的比组成比例

3、生活情境中的比

一辆汽车第一天4小时行驶了200千米,第二天3小时行驶了150千米。根据汽车行驶的情况,看能否组成比例?能的话写出来。

学生独立完成

4、比和比例对比

判断下面哪些是比例,哪些不是

1:5=5:1 ( )

40:5=4×2 ( )

1:3=2:6 ( )

5:6 ( )

(五)总结比和比例的区别和联系

师通过练习4引导学生总结比和比例的联系和区别,最后大屏幕展示

比例

意义

两数相除叫做两个数的比

表示两个比相等的式子

构成

由两项构成

有两个比,由四项构成

(设计意图:比和比例既有联系又有区别。通过练习,使学生在对比中清晰认识和区别这两个易混概念。又通过表格整理,对概念要素进行具体的界定和罗列,使学生在比较分析中准确地把握概念的细节和内涵)

(五)课堂总结

师:今天我们学习了和比例有关的知识,你们有什么收获?

学生回顾知识要点。

大屏幕用思维导图的形式展示本课的内容要点。

(六)联系生活,拓展延伸

师:其实比例在我们的生活中无处不在,我们来看一看(课件介绍黄金比例)

师:穿高跟鞋也与比例有关,你知道女土为什么穿上高跟鞋会更美吗?

(设计意图:数学从生活中来,又到生活中去。学生在学会“比例”后再去理解生活中的各种现象,更容易对数学产生亲切感。全课由生活现象设疑开始,又由生活现象释疑结束,首尾呼应。)

(七)布置作业

请同学们制作一张数学小报,把今天所学的知识在小报中呈现出来,可以借助思维导图的形式。

教学反思:

1、有意识的培养学生的数学思维能力

暨东师大培训回来之后,我对自己的教学进行了深入的思考,其中触动我的就是“培养思维比传授知识更重要”。于是,在本堂课的教学环节中,我有意识的设计了利用思维导图整体感知本章内容环节,目的就是给学生建立系统的知识框架,让他们了解学习每节内容的目的是什么,也感受到思维导图是归纳整理的有利工具。让学生带着目标去学习,对于激发他们的学习动机是有益的。这个环节的安排,可以在一单元的开篇一课的课堂上,也可以是在单元开始之前的预习环节。

2、提供丰富的生活素材,为学生探索新知奠定基础

通过让学生验证大量的生活中的比的比值相等环节,为他们提供大量的生活中的素材,就是为了让他们水到渠成的理解比例的意义奠定基础。但这个环节因为时间关系,我觉得还稍有欠缺,应该再提供给他们变换形式写比验证的机会。因为这里处理不当,就造成了巩固练习中按规律写出比例题目的难度。应在以后的教学中有所更正。

比例的意义优秀教案人教版第 2 篇

  教学目标:

  1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

  3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

  教学重点:理解比例的意义和性质。

  教学难点:应用比例的意义和性质判断两个比能否组成比例。

  教学准备:多媒体课件一套。

  教学过程:

  一、渗透情感,导入新课

  1、媒体出示国旗画面,学生观察,激发爱国情操。

  天安门升国旗仪式

  校园升旗仪式

  教室场景

  签约仪式

  师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

  2、媒体出示国旗的长和宽,并提出问题。

  天安门升国旗仪式:长5米,宽10/3米。

  校园升旗仪式:长2、4米,宽1.6米。

  教室场景:长60厘米,宽40厘米。

  签约仪式:长15厘米,宽10厘米。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

  师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

  3、学生探索,发现问题。

  师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

  学生自主观察、计算,发现国旗的长和宽的比值相等。

  二、认识比例,发现特征

  1、引出比例,理解比例的意义。

  媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

  并板书:2、4∶1、6=3/2

  60∶40=3/2

  师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

  并板书:2、4∶1、6=60∶40

  2、认识比例,知道比例各项的名称。

  ⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

  ⑵学生尝试说说什么叫比例。

  ⑶教学比例的各部分的名称。

  自学课本第34页的第一段话,初步认识比例各项的名称。

  出示其中一个比例,指出比例各部分的名称。

  学生说说自己写的比例的各项的名称。

  ⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

  ⑸判断下列几个比能不能组成比例。

  媒体出示,学生判断并说出理由。

  下面哪组中的两个比可以组成比例,把组成的比例写出来。

  ⑴6∶10和9∶15⑵20∶5和1∶4

  ⑶1/2∶1/3和6∶4⑷0、6∶0、2和3/4∶1/4

  ⑹思考:比和比例有什么联系和区别?

  学生自主思考,集体交流,了解比例和比的联系和区别。

  3、自主练习,发现比例的基本性质。

  ⑴媒体出示

  8∶4=()∶()15:10=()∶412∶()=()∶5

  媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

  ⑵师提出问题:在一个比例中,它们项有什么特点?

  ⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

  ⑷集体交流,发现性质。

  学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

  ⑸观察自己写的其它几个比例,验证发现。

  ⑹小结性质

  学生尝试用完整的数学语言说一说自己的发现。

  媒体出示学生的发现,教师指出这就是比例的基本性质。

  三、巩固练习,提高认识

  1、基本练习

  判断,媒体出示

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  ⑴6∶3和8∶5⑵0、2∶2、5和4∶50

  ⑶1/3∶1/6和1/2∶1/4⑷1、2∶3/4和4/5∶5

  2、拓展练习。

  比一比,谁写得多。

  在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

  四、总结全课,升华认识

  学生回顾全课,说说比例的意义和基本性质。

  板书设计:

  比例的意义和基本性质

  2、4∶1、6=3/2

  60∶40=3/2

比例的意义优秀教案人教版第 3 篇

教学目标

1、结合具体情境,通过计算,能说出比例的意义,能应用比例的意义判断两个比能否构成比例。

2、通过观察、比较、小组讨论说出比和比例的区别。

3、探索国旗中蕴含的数学知识,渗透爱国主义教育。

学习重点:

比例的意义,应用比例的意义判断两个比是否能构成比例。

学习难点:

应用比例的意义判断两个比是否能构成比例。

教学过程:

一、复习旧知

1.回顾什么叫做比?什么叫做比值?怎样求比值?(指名口答)

2.出示求比值的练习,学生独立完成,并发现其中两个比的比值相等。

二、情景导入

1.师:同学们,你们已经在胜利小学度过了六年的美好时光,在即将毕业之际,老师想放大一张咱们同台表演的照片作为纪念,却出现了这三种情况(课件出示三张师生同台表演的照片,其中两张照片变形了,另一张照片按比例放大)说说你的看法。

2.师:这张没有变形的照片是老师按比例放大的,(板书“比例”两个字),这就是我们今天要学习的知识。许多新的概念都和以前学过的知识相联系,同学们猜猜,比例和什么知识有关联?(指名口答)究竟比要满足什么条件才能成为比例呢?

三、探究新知

1.出示按比例放大的两张照片的长和宽的数据,说出长和宽的比,明确按比例缩放的照片场合宽的比相等。

2.多媒体出示三面国旗的长和宽,并提出问题。

天安门升国旗仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

师:这些形状相同,大小各异的国旗,是不是隐含着什么共同点呢?你能写出它们长和宽的比并求出比值吗?(指名板演)

3.通过计算你发现了什么?(指名口答)

4.既然比值相等,那我们就可以把这几个比用等号连接起来,(板书)同学们这就是比例,用你自己的话说说什么是比例?

5.打开书找到比例的意义,并多几遍。

6.在这三面国旗的长和宽的数据中,还有哪些数据能组成比例,自己试着写一写。(生写比例,师巡视)。指名汇报写出的比例。

四、课堂练习

1.判断哪些是比例?

指名判断,并说明理由,明确比和比例的区别与联系。

2.教材40页做一做的第一题。

先独立完成再集体订正,明确如何判断两个比是否能组成比例就是计算它们的比值,看看是否相等。

3.教材40页做一做第二题。

以小组为单位汇报写出的比例。

4.教材43页练习八第一题。

明确什么是相对应的两个量,并写出能组成的比例。

5.写出比值是4的两个比并组成比例,写出比值是0.25的两个比并组成比例。

小组比赛哪个小组写得多。

五、课外拓展

介绍黄金比例

六、作业

练习八第二题、第三题。

七、课堂小结

总结本节课的收获。

比例的意义优秀教案人教版第 4 篇

  教学内容:

  《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  设计理念:

  学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

  教学目标:

  1、通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2、引导学生揭示知识间的联系,培养学生分析判断、推理能力。

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?

  (2)这两个相关联的量成正比例关系吗?为什么?

  2、猜想

  师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

  师:从字面上看“反比例”与“正比例”会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的`愿望。

  二、提供材料,组织研究

  1、探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2、小组讨论、交流。(教师巡回查看,并做适当指导。)

  3、汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?

  反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4、做一做(略)

  5、学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1、基本练习。(略)

  2、拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

  反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3、综合练习

  四、总结

  反思:

  《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。

  如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号