日期:2022-02-13
这是添括号法则教学反思,是优秀的数学教案文章,供老师家长们参考学习。
去括号的根据是去括号法则与乘法分配律。去括号易犯的错误是括号前面是负号,而去括号时忘记变号;一个数乘以一个多项式,去括号时漏乘多项式的后面各项;在学生的练习与测试中,发现错误最多的是一个负数乘以一个多项式时,没有处理好符号问题。
一、错因分析:
学生出现上述错误的原因是对括号前的符号的属性定位不当,普遍把它看作是减号,运用乘法分配律进行乘法计算去括号时,缺乏整体思想,从而所得的乘积漏添上括号而出错。
二、解决策略:
(1)把括号前的“-”号进行定性:是减号还是负数的符号。在教学过程中曾尝试让学生通过先把所得的乘积漏添上括号后再去括号来解决。但效果不明显,后来改变了处理方法,要求学生把括号前的符号看成是数的符号,括号前是负数,运用乘法分配律时把整个负数乘进去,效果比前一种方法学生容易记住。
(2)加强练习,使学生对这方面的认识得到强化。
计算能力是学生在小学阶段必须掌握的一项很重要的基本技能,也是学生后续学习的基础。计算教学不仅要使小学生能够正确的进行四则运算,还要求小学生能够根据数据的特点,恰当地运用运算定律和运算性质,选择合理的灵活的计算方法和计算过程使计算简便。在这样的计算过程中,既要培养小学生的观察能力,注意力和记忆力,也要注意发展小学生思维的灵敏性和灵活性。同时计算也有利于培养小学生的学习专心,严格细致的学习态度,善于独立思考的学习能力,计算仔细,书写工整和自觉检查的学习习惯。计算教学直接关系着小学生对数学基础知识与基本技能的掌握,关系着小学生观察,记忆,注意,思维等能力的发展,关系着小学生的学习习惯,情感,意志等非智力因素的培养。因此,小学阶段的计算教学就显得异常重要。然而,在平时的教学中老师们往往就感到很困惑,觉得非常简单的知识小学生学起来却感到很困难,总是没能达到老师自己想要的效果。
出现这种原因我觉得主要存在以下几个问题:
(一)小学生对所学运算定律概念模糊不清
小学生的计算离不开数学概念,运算定律、运算性质、运算法则和计算公式等内容,而掌握概念是学好数学的基础。
1、乘法分配律与结合律易混淆
为了计算简便,解题中要训练学生合理运用运算定律,灵活解题。而在运算定律中,乘法分配律与乘法结合律非常相似,所以导致学生很容易混淆。如:25×7×4时,小学生总是把它当成分配律来计算,变成25×7+25×4或者25×7×25×4,不能理解概念。结合律的概念是,先把前两个数相乘,或者先把后两个数相乘,积不变。对概念理解不到位,导致在做题目时,老是出现错误。尤其乘法分配律是一个特别难理解的一个定律,比较抽象,而对于四年级的小学生来说,他们正处于具体形象思维向抽象逻辑思维的一个过渡时期,因此他们对概念的理解有点困难,总是会忘了后一个数也要和那个数相乘。如:(125+8)×4,他们总是会变成125×4+8。并且特别容易把它与乘法结合律混淆,所以导致教学比较的难。
2、运算中添括号与去括号时,运算符号的改变与不改变分辨不清
如讲括号的作用时,难点是添括号、去括号时括号里边运算符号的变化规律。如:15—4—2=15—(4+2)与20÷4÷5=20÷(4+5),但是很多学生觉得因15+4+2=15+(4+2),所以应该15—4—2=15—(4+2),因为20×4×5=20×(4×5),所以应该20÷4÷5=20÷(4÷5)。这就需要让小学生在充分的计算实践的基础上,自己归纳应该怎样变化,并且知道为什么?因为定律是建立在法则的基础上的。加不加括号,用不用运算定律,最后的计算结果是一样的。这条原则是不变的。只有小学生在熟练应用运算定律、括号后,积累了大量计算经验(如:4×25=100)的基础上再教简算才会显的自然、简单。简算是有效利用运算定律,括号使计算变的简单的一种计算技能,有时可直接口算,而不会改变计算结果,运用简算可提高计算速度。简算不单是在做简算题时才用,是可以随时使用的,这一点也应让小学生清楚。
3、运用乘法分配律逆运算易出错
为了计算简便,要灵活运用定律,而乘法分配律的逆运算却是一个难点,小学生难以理解。如计算3.4×0.125+4×0.125,本来小学生一眼就能看出运用乘法分配律可以得出,可是小学生很容易出现错误,(3.4+4.6)×0.125×0.125或者是直接计算,不会灵活运用乘法分配律的逆运算。但是有些学生学得比较快,所以在教学时,教师可以出一些不同等级的题目,可进一步深化,挖掘学生的潜能,可以让学得快的同学拓展思维依次出示:1.25×0.34+4.6+0.125和3.4÷8+4.6×0.125这样,就不会让学得快的学生觉得无聊。还有在教学中要尽量减少学生计算的错误,提高计算的正确率,应根据学生的实际情况,因材施教,因人施教,采取相应的对策,才能提高学生计算的能力。
(二)前后知识的相互干扰对小学生的影响
小学生都认为:我知道按顺序做是比较方便的,但这样就没有运用运算定律,就不是简便计算!也有的小学生:“我根本没仔细看过题目,因为是简便计算嘛,所以拿上来就运用运算定律。”这种错误是由于小学生不正确的简便意识所造成的,他们认为:简便计算一定要运用运算定律,否则就不是简便计算!
由于不看题,本来直接算括号时,算式会更加的简便,但是有些小学生却认为要用运算定律,式子才会简便。因此利用乘法的分配率,虽然最终答案是正确的,但是导致算式多走了弯路,反而不简便了。
(三)题目本身的数字特征对小学生的干扰
我们在学习简便计算的一个很明显的标志就是“凑整思想”。“凑整”就是利用运算定律凑成整十整百,从而达到使计算简便的效果。但“凑整”必须建立在正确并熟练运用运算定律的基础上,不能盲目地追求“凑整”,一看到可以合成起来凑成整十整百的,就不顾算式的特性,强制性的“凑整”,变成了为“凑整”而“凑整”,造成知识学习的机械性。有些题,由于受数字的干扰,小学生容易出现违背运算法则的思想错误,盲目追求“凑整”。
(四)小学生灵活运用运算定律的能力欠缺
在教学的过程中,运算定律教学这一部分,教材在编排上安排的课时较短,内容既少又简单,题也典型,教材只是告诉你教什么内容,并提供范例,发挥都在于教师,所以教师在教学时,要一步一步的来,一条一条的说明。所以,在上课时,检查教学效果发现小学生都掌握的不错,都会运用,可是一到他们自己课外去做时,就不会运用了,因为在前面他们学习了四则运算,从而形成了思维定势,一下子比较难改变过来,还停留在前面的学习当中,在上课时,由于老师一直在强调所以才会运用,而到了课后没有人跟他们说,就不知道怎么使用了。如:56×37+56×63,他们只会按照以前所学的从左到右的计算顺序去计算,不知道使用简便计算,灵活的运用到课堂中来。小学生很难转变所学的知识,所以导致在教学时比较困难。
“算法易模仿,算理难深入”这是孩子们学习运算是碰到的一大难题,同时也是我们教师教学是面对的棘手问题,今天的主题研讨活动给了我们一个很好的诠释,既提供了理论支撑,又有了具体操作的章法可循,可以说是受益匪浅。
这次活动先由来自北京教科院中心的贾福录老师带来的《“数的运算”的知识结构与教学思考》微讲座,然后是《20以内退位减法》和《运算定律》两个单元的单元整体教学说课研究,以实例帮助老师们理解如何帮助学生理解加减乘除的算理算法。贾老师对运算教学中的“承重墙”和“隔断墙”的区分,让我有了清晰的理解。承重墙“是数学的本质,也是学生发展的基石。运算教学中的”承重墙“是:支撑学生探索算法、理解算理的重要”数学意义”;在运算学习中逐步积累和形成的经验与能力。“隔断墙”是不利于学生知识建构、阻碍学生发展的数学内容及表面形式。运算教学中的“隔断墙”是不同阶段学习的运算法则、运算方法。如:凑十法、破十法、平十法等。让学生通过这些方法表面上的不同,体会到本质上的联系,就是打通“隔断墙”。
在《运算定律》单元整体设计中,我们更全面的认识了它的内涵和价值,根据前测数据设计教学目标,教学设计已有板块很到位。通过对学习本质、学习内容蕴含的数学思想和方法、列举人教版、北师大版、苏教版教材编排特点抓住了核心概念,从而设计出匹配的教学目标。在两位老师的解读中,我们深入解读课标、梳理教材中的前位和后位知识,从“积累模型建立的学习经验”和“凸显推理、抽象、建模思维方式的构建”两个方面入手,在问题情境、列式解答、发现规律、举例验证、算理解释、模型表达的过程中实现模型的建构,在探寻规律环节通过四个步骤完整地经历建模的全过程,从学习知识到学习方法,实现新旧知识的有效沟通,真正内化运算的意义。
两位老师进运算定律单元进行了整体设计。他们从单元的内容入手进行分析,明确不同内容的层次水平和学习要求,清晰的指出了本单元的能力目标。然后分析不同年级的教材找到了知识间的前后联系,发现运算律在运算教学中具有核心地位。基于对学情,教学内容的分析,将本单元的内容打通,将具有相同特点的交换律放在一起研究,把简单的“加法交换律、乘法交换律”整合在一课时,承载起种子课的作用,让学生初步形成探究的方法,为后面探究其他运算定律做好准备。
这次课程也帮我打通很多知识之间的连接点。如:数的运算和数的意义其实是不分家的;课标提出的运算能力是正确的进行运算,在传授过程中,还要注意对抽象概念的理解;加法和减法其实是单位的累加和累减;学习整数、小数、分数加减法时,要沟通算法之间的联系。
听了老师们的讲解和专家们的点评,使我受益匪浅。数的运算通过直观教学让学生更易理解算理,数形结合,抓住认知起点。数运算教学在小学阶段是非常重要的内容,理解数的核心本质很重要。从生活经验出发,直观教学,理解抽象的内容。用实物教学,以及形象的图片讲解,非常有趣味性。让孩子们发自内心的喜欢,主动去学。感谢各位老师的经验交流与分享!
通过这次的研讨,在专家老师的解读与分析,让我对数学学科小学阶段的教学过程中有所理解承重墙与隔断墙,今后教学实践活动中怎样把握教材所呈现的知识点间的联系,采取有效的手段引领孩子们学习数学概念,数学知识,受益匪浅。感谢专家和老师们的干货分享,对我来说是实质性的指导,正如视频所讲,我们面临同样的问题,学生算法容易模仿,算理确是难以理解,今天有了更多的方法来指导我的教学,再次感谢这次活动。
本节课的新知识在以前的数学学习中都有相应的认知基础,只是没有形成知识体系,教师在充分备学生和教材的基础上为大家奉献了一节实效又实用的课堂。教师能根据旧知与新知的结合点深入认识原来学过的知识和方法。数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下面的探究呈现素材。
教学中,两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律然后让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。在充分感知个性创造的基础上,使学生体会到符号的简洁性,从而发展了学生的符号感。构建了简单的数学模型。
本节课的教学,学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,但并未将两者放在一起对比,抽象出异同。在学完两种运算定律后,应给学生一定的时间比较两种运算定律的区别,加深学生的理性认识,促进学生思维灵活性的发展。
另外,为了培养学生的思维的创造性,教师在总结时不能简单说说收获,可以提一个思维拓展的问题。如:学了加法交换律和加法结合律你还会想到什么呢?学生猜测后思绪会飞扬起来,甚至会问老师,亲自动手实践。只有激发学生积极思考,才能使学生的思维由“表层”走向“深入”,促进学生的思维发展。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号