日期:2022-02-12
这是解一元二次方程教案设计,是优秀的数学教案文章,供老师家长们参考学习。
解一元二次方程教案设计第 1 篇
学习目标:
1、使学生会用列一元二次方程的方法解决有关增长率的应用题;
2、进一步培养学生分析问题、解决问题的能力。
学习重点:
会列一元二次方程解关于增长率问题的应用题。
学习难点:
如何分析题意,找出等量关系,列方程。
学习过程:
一、 复习提问:
列一元二次方程解应用题的一般步骤是什么?
二、探索新知
1.情境导入
问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.2002年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2003年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长2003年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?
2.合作探究、师生互动
教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即2002年实际完成的亩数是30(1+x),第二次增长后,即2003年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.
教师引导学生运用方程解决问题:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.
②全村坡耕地还林还草为50×36.3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90.75(万斤).
三、例题学习
说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?
(小组合作交流教师点拨)
时间 基数 降价 降价后价钱
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由学生写出解答过程)
四、巩固练习
一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
五、课堂总结:
1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。
2、注意解方程中的巧算和方程两个根的取舍问题。
六、反馈练习:
1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()
A.x+(1+x)x=20% B.(1+x)2=20%
C.(1+x)2=1.2 D.(1+x%)2=1+20%
2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()
3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?
解一元二次方程教案设计第 2 篇教学内容
一元二次方程概念及一元二次方程一般式及有关概念。
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目。
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。
2.一元二次方程的一般形式及其有关概念。
3.解决一些概念性的题目。
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程
一、复习引入
学生活动:列方程。
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________。
整理、化简,得:__________。
问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点。
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______。
整理,得:________。
老师点评并分析如何建立一元二次方程的数学模型,并整理。
二、探索新知
学生活动:请口答下面问题。
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0)。因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等。
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22。
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x—2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项。
分析:通过完全平方公式和平方差公式把(x+1)2+(x—2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式。
解:去括号,得:
x2+2x+1+x2—4=1
移项,合并得:2x2+2x—4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项—4。
三、巩固练习
教材P32 练习1、2
四、应用拓展
例3.求证:关于x的方程(2—8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程。
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2—8+17≠0即可。
证明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不论取何值,该方程都是一元二次方程。
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。
六、布置作业
解一元二次方程教案设计第 3 篇教学目标:
知识与技能目标:
经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
过程与方法目标:
经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。
情感态度与价值观目标:
培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。
教学重点:
理解一元二次方程的.概念及其形式。
教学难点:
一元二次方程概念的探索
教学过程
一、情境引入
今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)
二、探索新知
列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)
请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)
观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。
请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。
2、以上方程与一元一次方程有什么相同与不同之处?
3、你能说说什么样的方程是一元二次方程吗?
4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程_____,用字母表示系数时,要注意什么吗?
5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?
6、你认为一元二次方程的概念中重点要强调的是什么?为什么?
请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?
请你抢答问题7。
7、判断下列方程是不是一元二次方程,若不是请说明理由。
同桌两人能举出几个一元二次方程的例子吗?
探索二
先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。
找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。
三、巩固练习
请看问题2,
2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?
四、课堂:
先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。
五、自我检测:
看看我们的收获是不是真的
硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改
1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?
根据题意,列出方程为_____。
2、把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:
方程
一般形式
二次项系数
常数项
3x2=5x-1
(x+2)(x-1)=6
3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0
(1)k为何值时,是一元二次方程?k-------是一元二次方程。
(2)k为何值时,是一元一次方程?k-----是一元一次方程。
六、小组
请小组长本小组今天大家的表现。
七、作业
课本42页1(2),2(1)(2)(3)
能力挑战:
已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?
板书设计:一元二次方程
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
2x2-13x+11=0(1)含一个未知数(2)2次
x2-8x-20=0(3)整式方程
x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)
二次项一次项常数项
二次项系数一次项系数常数项系数
参加区优质课评比反思:
这次有幸参加我区优质课评比,感受颇多。
一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。
二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。
三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。
解一元二次方程教案设计第 4 篇教学目标:
1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型。
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点
1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点
1、建立一元二次方程实际问题的数学模型。
2、把一元二次方程化为一般形式。
教学方法:指导自学,自主探究
课时:第一课时
教学过程:
(学生通过导学提纲,了解本节课自己应该掌握的内容)
一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)
1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程。
2、你发现上述三个方程有什么共同特点?
你能把这些特点用一个方程概括出来吗?
3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念
你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?
二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?
4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?
5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?
三、反思:(学生,进一步加深本节课所学内容)
这节课你学到了什么?
四、自查自省:(通过当堂小测,及时发现问题,及时应对)
1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个
(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________。其二次项是_________,系数为_______,一次项系数为______,常数项为______。
3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.。
作业:必做题:习题7.1
选做题:(挑战自我)p41随堂练习
1、已知关于的方程是一元二次方程,则为何值?
2、当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?
3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?
4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2。
(1)(2)
板书设计:一元二次方程
定义:一个未知数整式方程可以化为
一般形式ax2+bx+c=0(a、b、c为常数,a≠0)
二次项一次项常数项
系数为a系数为b
教学反思
这次我参加了区里组织的优质
课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。
首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间
其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。
再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。
我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号