当前位置:首页 > 教案教学设计 > 教学设计一等奖

圆的周长一等奖公开课教案

日期:2022-05-22

这是圆的周长一等奖公开课教案,是优秀的教学设计一等奖文章,供老师家长们参考学习。

圆的周长一等奖公开课教案

圆的周长一等奖公开课教案第 1 篇

教学内容:

  圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。

  教学目标:

  1、认识圆的周长,理解圆周率的意义。

  2、掌握圆周长的计算公式,会用公式正确计算圆的周长。

  3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。

  教学重难点:

  1、圆的周长公式推导及运用公式计算圆周长是重点。

  2、通过实验找出圆的周长与直径的关系—圆周率是难点。

  3、关键是让学生动手操作测周长与直径。

  教学准备:

  学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。

  老师准备:小黑板

  教学过程:

  一、复习铺垫(5分钟)

  1、小黑板出示

  (1)

  (2)

  10厘米 6分米

  2、提出问题:

  同学们,老师要用铁丝分别做成上面两个图形的框架,

  (1)请同学们帮助老师算一算每个图形需要用多长的铁丝?

  (2)、每个图形需要用多长的铁丝,是求什么的?

  (3)什么是周长?周长的单位有哪些?

  (4)、要求图(1)、图(2)的周长应该知道什么条件?

  二、探索新知(25分钟)

  (一)认识圆的周长

  1、出示:圆的图形 和其他实物圆。

  2、提问:

  (1)这是一个什么形实物?

  (2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?

  3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。

  4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。

  (二)提示课题

  在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。

  板书课题——圆周长计算

  (三)圆的公式推导

  1、猜一猜,想一想,动手操作(8分钟)

  (1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:

  圆的周长与它的什么条件有关?

  独立思考后,前后桌四人交换意见。

  学生汇报:圆的周长和直径(或半径)有关。

  继续提问:它们之间到底有什么的关系呢?

  故事激趣

  我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。

  (2)动手实验:(四人一组,合作完成) (一组测一个)

  a、取出圆形纸板,量出圆形纸板的直径。

  b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。

  d、算出周长和直径的比值。

  e、 汇报,老师把表画在小黑板上,并填表。

  2、观查数据,发现规律:(5分钟)

  观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)

  小组汇报:

  同一个圆,它的周长是它的直径的3倍多一些。

  3、认识圆周率(2分钟)

  (1)在学生发现圆周长与它的直径关系的基础上,老师明确:

  刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径

  (2)让学生读一读( Pài )写一写。

  (3)了解π的值。

  A、π是一个无限不循环小数,π=3.1415926535..........

  B、在实际应用中一般只取它的近似值,即π≈3.14.

  4、圆周长公式推导:(5分钟)

  老师:如果已知圆的直径,如何计算圆的周长。

  圆周长= π×直径

  如果周长用C表示:字母公式C=πd

  知道半径,怎样求周长C=2πr

  ( 四)应用公式(2分钟)

  教学例1:

  (1)出示例题:圆形花坛的直径是20米,它的周长是多少米?

  (2)学生读题并尝试列式计算。

  (3)学生板演:3.14×20=62.8(米)

  说明:解题时可以不写计算公式

  π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。

  三、巩固练习(8分钟)

  1、 完成课本64页做一做。

  2、完成练习十五第1题。

  3、补充作业。判断题:

  (1)圆的周长刚好是直径的3.14倍。

  (2)大圆的圆周率大,小圆的圆周率就小。

  (3)π是两位小数。

  (4)圆的周长等于它的半径的2π倍。

  (5)求周长,直径是唯一条件。

  四、课堂小结(2分钟)

  本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比

  值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。

  五、布置作业:课堂作业

  六、板书设计圆周长计算

  圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径

  因为d=2r 圆周长=π×半径 ×2

  π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr

  注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。

  (2)π在计算的应用中,结果不用“≈”号,而用“=”号。

  3.14×20=62.8(米)

  答:圆形花坛的周长是68.2米

  七、课后记

  《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。

  本节课中,我觉得比较成功的是:

  首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。

  本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。

  在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。

圆的周长一等奖公开课教案第 2 篇

 教学目标

  1.使学生认识圆的周长,初步理解圆周率的意义。

  2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点和难点

  推导圆周长的计算公式。理解圆周率的意义。

  教学过程设计

  (一)复习准备

  上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

  (二)学习新课

  我们这节课就来研究圆的周长。(板书:圆的周长)

  我想问问同学,你们都带了哪些圆形实物?

  两人互相指指圆的周长在哪儿?

  谁愿意到前面来指一指老师手里这个圆的周长。

  谁跟他指得不一佯?为什么这样指不行?

  老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

  老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

  哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

  请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

  (学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

  请小组代表汇报本组的实验过程和实验结果。

  同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

  (师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

  看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

  想一想,以前我们学过哪些几何图形的周长?

  长方形的周长和谁有关系?有什么关系?

  正方形的周长和谁有关系?有什么关系?

  圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

  (用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

  我们得出了圆的周长和直径有关系。

  (板书:圆的周长 直径)

  这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

  (学生分小组讨论。)

  通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

  是不是这样呢?我们来验证一下。

  (电脑演示:圆的周长是直径的3倍多一些。)

  这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

  谁能说说圆周率是怎么得来的?

  请同学们看书上是怎么说的?

  早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

  (出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

  约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

  我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

  圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

  既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

  现在我们能不能计算黑板上这个圆的周长?

  什么条件不知道?(直径。)

  谁来测直径,用分米作单位。(板书:分米)

  如果直径是2分米,半径就是几分米?

  用半径能不能求圆周长?

  现在我们试着用直径或半径来求黑板上圆的周长。

  谁用直径求出圆的周长?

  (板书:3.142=6.28(分米))

  为什么这样列式?

  (板书:圆的周长=直径圆周率)

  如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

  (板书:C=d)

  谁能用半径求圆的周长?为什么这样做?

  如果用字母r表示半径,字母公式怎么表示?

  (板书:C=2r)

  (三)巩固反馈

  1.求出下面各圆的周长。(单位:厘米)

  2.判断,你认为正确画,错误画。

  (1)一个圆的周长总是它的直径的倍。

  (2)圆的周长是6.28厘米,它的半径是2厘米。

  (3)圆周长的一半与半个圆的周长相等。

  3.选择:你认为哪个答案正确就举几号卡片。

  (1)车轮滚动一周,所行路程是求车轮的[ ]

  ①半径

  ②直径

  ③周长

  (2)圆形水池的直径是4米,绕池一周长

  ①25.12米

  ②12.56米

  ③12.56平方米

  (3)A圆的直径是6厘米,B圆的直径是2分米,圆周率

  ①A圆大

  ②B圆大

  ③一样大

  4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

  (四)总结全课

  这节课你学会了什么?(引导学生总结本课所学的知识。)

  课堂教学设计说明

  本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

圆的周长一等奖公开课教案第 3 篇

一、指导思想与理论依据:

  《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

  二、教材及学情分析:

  教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

  三、教学目标、重点及难点:

  1、知识和技能:

  使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

  2、过程与方法:

  (1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

  (2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

  3、情感与态度:

  (1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

  (2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

  (3)在解决问题过程中,增强应用意识。

  教学重点:

  让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

  教学难点:

  对圆周率的认识。

  教学准备:

  ⒈圆形物体实物,。

  ⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

  四、教法:

  1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

  2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

  五、主要教学环节与设计:

  通过以下环节教学本课:

  一创设情境,初步感知

  二合作交流,探究新知

  三实践应用,解决问题

  四畅谈收获,课外延伸

  六、教学过程:

  第一个环节:创设情境,初步感知师:

  哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

  生:求行驶多长的路程就是求圆形的周长。

  师:今天就来学习怎样计算圆的周长。

  此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

  第二个环节:合作交流、探究新知

  (一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

  1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

  2、分析比较长方形、正方形和圆的周长各有什么不同?

  3、指一指、描一描自己手中圆片的周长。

  设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

  (二)探究圆周长的计算方法

  圆周长计算公式的推导这一内容,我安排了三个环节:

  1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  预设的几种情况:

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绳子缠绕实物圆一周并拉直;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  小结:以上的几种方法都是要“化曲为直”。

  出示地球图片。

  如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

  设计意图:

  1、这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。

  2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

  (1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

  师:圆的周长与它的什么有关呢?

  生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

  (2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

  师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

  小组汇报:

  生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

  师:通过计算你们发现了什么?

  生:每个圆的周长,都是它的直径长度的3倍多一些。

  追问:那么是不是所有的圆周长与它直径都有这种关系呢?

  最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

  师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

  生:圆周率。

  师:你对圆周率还有哪些了解?

  这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

  设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

  (3)得出结论师:你知道圆周长的计算方法了吗?

  生:知道。

  板书公式:C=πd,C=2πr

  设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

  第三个环节:实践应用,解决问题

  这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

  1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

  2、设计了三道有梯度的练习:

  ①d=5米, C=?

  ②r=5厘米 C=?

  ③C=6.28米d=?

  3、明辨是非,下面的说法对吗?

  ①π=3.14

  ②大圆的圆周率小于小圆的圆周率。

  ③圆的周长是它的半径的2π倍。

  意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

  第四个环节:畅谈收获,课外延伸作业:

  赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

  设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

  你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

  七、板书设计:

  圆的周长

  化曲为直 圆的周长÷直径=圆周率

  C÷d=π 3.14×20=62.8(英寸)

  C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

  C=2πr

圆的周长一等奖公开课教案第 4 篇

教材分析:

  圆的周长是在学生学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步来学习的。从生活实际入手,利用学生掌握的有关圆的知识,通过实验得出结论。

  学情分析:

  本单元第一部分通过对圆的研究,使学生初步认识了研究曲线图形的基本方法,也渗透了曲线图形与直线图形的内在联系。前期的学习和认识都为学生学习研究“圆的周长”奠定了良好的知识、方法基础和铺垫。“圆的周长”教学部分,教材在编排上加强了启发性和探索性,注重让学生动手操作,使学生在实践活动中通过交流、思考来探究,逐步导出和掌握计算公式。教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径、半径的关系,验证猜测等过程理解并掌握圆的周长计算方法。

  教学目标:

  知识与技能:知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

  过程与方法:通过对圆周长的测量和计算公式的探讨,培养学生的观察、猜测、比较、分析、综合和主动研究、探索解决问题方法的能力。

  情感态度与价值观:初步学会透过现象看本质的辩证思想方法,渗透“化曲为直”的数学思想,培养爱国主义情感,激发民族自豪感。

  教学过程:

  (一) 创设情景,导入课题。

  1、创设情境。

  (1)教师出示熊大和光头强跑步比赛,请同学判断比赛的公平性并说明原因。

  师:学习新知识之前,老师想邀请大家一起来看一场比赛,每个同学都是裁判,有没有兴趣?比赛开始!

  (2)师:看到这儿,你对这个比赛有什么看法?

  学生判断比赛的公平性并说明原因。

  学生发表看法,可能的回答如下

  生1:不公平,因为光头强沿着正方形跑,熊大沿着圆形跑。

  生2:不公平,因为正方形的周长比圆形的周长要长。

  ……

  (3)教师小结,引出本节课题。

  师:看来,这个比赛与跑道的周长有关系。上节课同学们已经认识了圆,这节课我们就一起来研究圆的周长。(板书课题)

  设计意图:通过熊大和光头强比赛的情景创设,一方面是激发学生的学习兴趣和参与研究的主动性,体会数学与生活的密切联系;另一方面通过两种图形路程的不同,引出新课。

  2、认识圆的周长 。

  (1)师:什么是圆的周长?怎样求圆的周长?

  (2)教师出示圆形纸片。师:谁能上来指一指,哪个长度是这个圆形纸片的周长。

  (3)教师在大屏幕上用flash动画出示圆环框架并小结。

  师:同学们说的很好,围成圆的曲线的长就是指圆的周长。

  设计意图:本环节的设计是让学生初步感知本课的知识范围,做好心理铺垫;老师展示的目的是为下面“化曲为直”的方法打基础。

  3、讨论圆的周长的测量方法。

  (1)师:要想测量这个圆的周长,能用直尺直接测量吗?为什么呢?

  (2)师:你们有没有办法来测量它的周长?把你的方法在小组内交流一下。

  学生分组讨论,小组代表发言:

  生1:不能,因为圆的周长是一条曲线,而直尺是直的!

  生2:把圆片放在直尺上滚动一周,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准另一刻度线,这时圆正好滚动一周。圆滚动一周的长就是圆的周长。(滚动法)

  生3:用一条长线把圆绕一周,捏紧这两个正好连接的端点,把线拉直,这两点之间的线的长就是圆的周长。(绕线法)

  (3)教师跟随小组代表发言,用边演示边总结测量方法。

  教师小结:看来,同学们不论是用绕线法也好,滚动法也罢,都是非常巧妙地将曲线转化成了直直的一条线段再来测量,也就是一种化曲为直的方法,你们真是太棒了!

  师:(出示一个很大的圆形摩天轮)你能用这两种方法测量它的周长吗?

  看来,这两种测量的方法还是有一定的局限性的,那你们有什么好办法?

  设计意图:通过尝试性的动手测量,使学生较为牢固地掌握了周长的概念,也很好地培养了学生的动手操作能力,在这个过程中使学生切身体会到“化曲为直”的转化思想。

  (二) 自主学习,探究新知。

  1、猜测。

  师:正方形的周长与它的边长有关,那么,请你大胆猜想,圆的的周长与什么有关呢?(播放)

  2、探讨圆的周长与直径的关系。

  师:圆的周长和直径到底有什么样的倍数关系呢?现在我们就以小组为单位,测量3个大小不同的圆片的周长与直径,并通过合作的方式完成实验报告单,各组组长要 分工明确。(出示操作要求并播放轻音乐)

  圆的名称

  直径

  周长

  周长÷直径的商

  我们的结论:

  圆的周长是直径的(3)倍(多)一些。

  设计意图:训练了学生的思考习惯,也为下面学习找准方向,充分尊重了学生的主体地位。 本环节重在加强学生小组合作、合理分工、条理思考、大胆推理与清楚表达的指导,旨在为每一位学生的自主学习创造机会与条件,使每一位学生在自己的参与、思考与经历中获得经验认识,培养学生良好的数学学习方法、习惯和数学思考能力。

  3、 共同发现 。

  师:同学们,和大家分享一下你们测量的数据和计算结果,好吗?仔细观察实验报告单上的计算结果,你们有什么发现?

  生:我发现圆的周长都是直径的3倍多一些。

  每个小组汇报完后,把实验报告单粘贴在黑板上)

  4、 介绍圆周率。

  师:你们可真了不起,刚才,同学们测量了大大小小不同的圆,但却有着相同的发现,那就是任何圆的周长都是它直径的3倍多一些。其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是3倍多一些。这个倍数是一个固定不变的数,我们它叫做圆周率(板书)。(介绍误差)用字母π来表示。读法与写法。

  师:其实,有关圆周率的知识还有很多,那么我们就一起走进兔博士网站了解一下圆周率的由来。(播放)

  师:看完这些资料,你有何感想?

  设计意图:通过播放有关祖冲之的资料,引导学生发表感触,及时激励学生,对学生进行爱国教育,增强民族自豪感!

  5、推导圆的周长公式 。

  师:在计算时为了方便,我们只取它的近似值,π≈3.14,你能根据我们的结论推导出圆的周长公式吗?

  生:因为圆的周长总是它直径 的π倍。所以圆的周长=直径X圆周率。如果用C表示圆的周长,那么C=πd或C=2πr

  C=πd或C=2πr(板书)

  (三)、运用知识,解决问题。

  (1)出示图形题。

  师:你这样列式分别应用了哪个公式?

  (2)我是小法官。

  1、π=3.14

  2、大圆的圆周率大于小圆的圆周率。

  3、圆的周长总是直径的π倍。

  (3)走进生活,解决生活问题

  1、一面圆镜的镜面直径是25厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米 ?

  2、车轮转动一周,哪号车走得远?为什么?

  车轮转动一周走的距离和什么有关系?

  (4)运用今天所学知识,解决课开始的跑步比赛的公平性!

  设计意图:本环节主要为了检验学生利用知识解决问题的能力,第4题的设计为了照应开头;拓展延伸设计旨在提高学生对数学新知的应用能力和灵活变通能力,激发学生再创造的愿望和热情,真正提高学生的数学素养。

  (三)课堂小结。

  通过我们今天的学习,你们都有哪些收获?生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收获更多的快乐!

  (四)布置作业。

  1、课后习题1—3题。

  2、在数学日记中叙述一下你对圆周率的理解。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号