当前位置:首页 > 教案教学设计 > 教学设计一等奖

平方根一等奖教案

日期:2022-05-26

这是平方根一等奖教案,是优秀的教学设计一等奖文章,供老师家长们参考学习。

平方根一等奖教案

平方根一等奖教案第 1 篇

 教学设计示例

  一.教学目标

  1.会用计算器求数的平方根;

  2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;

  3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣.

  二.教学重点与难点

  教学重点:用计算器求一个正数的平方根的程序

  教学难点:准确用计算器求解一个正数的平方根

  三.教学方法

  讲练结合

  四.教学手段

  实物投影仪,计算器

  五.教学过程

  在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。

  复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。

  现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。

  例1.用计算器求 的值。

  分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。

  解:用计算器求 的步骤如下:

  小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。

  例2.用计算器求 的值。(保留4个有效数字)

  解:用计算器求 的步骤如下:

  小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

  例3.用计算器求 的值。

  解:用计算器求 的步骤如下:

  因为计算结果要求保留4个有效数字,

  例4.用计算器求1360.57的平方根。

  解:用计算器求1360.57平方根的步骤如下:

  因为计算结果要求保留4个有效数字,

  小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

  例5.用计算器求值:

  分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

  解:按键的顺序是: 显示612.65685

  ≈612.7

  练习:

  求下列正数的算术平方根:

  (1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;

  (7) ; (8)101.38

  六.总结

  利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。

  八.作业

  教材 A组1、2、3

  九、板书设计

平方根一等奖教案第 2 篇

 教学目标:

  【知识与技能】

  了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

  【过程与方法】

  理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

  【情感、态度与价值观】

  体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

  【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

  【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。

  【教具准备】小黑板科学计算器

  【教学过程】

  一、导入

  1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。

  2、板书:实数1.1平方根

  二、新授

  (一)探求新知

  1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?

  2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。

  3、你还能举出哪些无理数?(,)、、1/3是无理数吗?

  4、有理数和无理数统称为实数。

  (二)知识归纳:

  1、板书:1.1平方根

  2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)

  3、怎么算?每块地砖的面积是:10.8120=0.09平方米。

  由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。

  4、练习:

  由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。

  5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)

  例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。

  6、说一说:9,16,25,49的一个平方根是多少?

  (三)探求新知:

  1、4的平方根除了2以外,还有别的数吗?

  2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。

  3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)

  4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。

  5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;

  把a的负平方根记作-。

  6、0的平方根有且只有一个:0。0的平方根记作,即=0。

  7、负数没有平方根。

  8、求一个非负数的平方根,叫做开平方。

  (四)巩固练习:

  1、分别求下列各数的平方根:36,25/9,1.21。

  (6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)

  2、分别求下列各数的算术平方根:100,16/25,0.49。(10,4/5,0.7)

  三、小结与提高:

  1、面积是196平方厘米的正方形,它的边长是多少厘米?

  2、求算术平方根:81,25/144,0.16

平方根一等奖教案第 3 篇

 教学目标

  1、使学生了解数的平方根的概念和性质。

  2、使学生能够根据平方根的定义正确的求出一非负数的平方根。

  3、提高学生对数的认识。

  教学重点

  平方根的概念和求法

  教学难点

  非负数平方根的个数问题

  教具学具

  投影仪

  教学方法

  讲练结合

  (补 标 小 结)

  教 学 过 程

  ( 展 标 施 标 查 标)

  教 学 内 容

  教师活动

  学生活动

  一、引入新课

  以正方形的面积和边长的.关系引入平方根的概念

  展标

  投影:

  1、已知一正方形面积为4cm2,则它的边长为---------cm

  2、已知一正方形面积为2cm2则它的边长为---------cm

  这两个小题有什么共同特点?

  这就是我们今天要来研究的一个新的概念——平方根

  二、施标

  1、平方根的定义:

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)

  求一个数的平方根的平方根的运算叫做开平方

  2、平方根的性质

  (1)一个正数有几个平方根?

  (2)0有几个平方根

  (3)一个负数有几个平方根?

  3、平方根的表示方法

  填空(投影)

  1、( )2=9

  2、( )2=0.25

  3、( )2= 1625

  4、( )2=0

  5、( )2=0.0081

  这五个小题形如x2=a

  X叫做a的平方根(二次方根)

  板书:

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)

  求一个数的平方根的运叫做开平方

  提问:

  是不是每个数都有平方根?

  如果有的话,有几个?它们之间是什么关系?

  讨论总结

  1、一个正数有两个平方根,它们互为相反数。

  2、0只有一个平方根,就是0本身。

  3、负数没有平方根。

  平方根表示方法练习

  4、求一个非负数的平方根

  例1、求下列各数的平方根?

  (1)361

  (2)14449

  (3)0.81

  (4)23

  读作:正、负二次根号下a

  a的正的平方根:+√a

  a的负的平方根:-√a

  投影练习题:

  1、用正确的符号表示下列各数的平方根

  ① 26、②247、③0.2

  ④3、⑤783

  2、+√7表示什么意思?

  3、-√7表示什么意思?

  4、±√7表示什么意思?

  引导学生回答并板书解题步骤:

  解:

  (1)∵(±19)2=361

  ∴361的平方根为

  ±√361=±19

  (2)∵(±127)2=14449

  ∴14449的平方根为±√14449=±19

  (3)∵(±0.9)2=0.81

  ∴0.81的平方根为

  ±√0.81=±0.9

  (4)23的平方根为±√23

  (±19)2=361

  (±127)2=14449

  (±0.9)2=0.81

  (±√23)2=23

  三、查标

  四、小结

平方根一等奖教案第 4 篇

教学目标:

  1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

  2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

  教学重点:

  算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程

  一、情境导入

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

  这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

  二、导入新课:

  1、提出问题:(书P68页的问题)

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值.

  一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

  也就是,在等式 =a (x0)中,规定x = .

  2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

  3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。

  4、例1 求下列各数的算术平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、练习

  P69练习 1、2

  四、探究:(课本第69页)

  怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

  五、小结:

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的`?

  3、怎样求一个正数的算术平方根

  六、课外作业:

  P75习题13.1活动第1、2、3题

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号