日期:2022-06-14
这是人教版正比例说课稿一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。
“正比例的意义”教学,是在学生掌握了比例的意义和基本性质的基础上进行教学的,着重使学生理解正比例的意义。正、反比例知识,内容抽象,学生难以接受。学好正比例知识是学习反比例知识的基础。因此,使学生正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入:
数学来源于生活,又服务于生活。关注学生已有的生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。这样,将学生带入轻松愉快的学习环境,创设了良好的教学情境,学生及时进入状态,手脑并用,课堂气氛十分活跃,将枯燥的知识形象,具体,学生易于接受。
2、在观察中思考
小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让学生自己再设计一种情景,并引导学生进行观察,从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
3、在合作中感悟
新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导学生初步认识了两个相关联的量后,敢于放手让学生采取小组合作的方式自学例1,在小组里进行合作探究,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。
4、在练习中巩固提升
为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让学生巩固本节课知识。通过练习,要求逐步提高,学生的思维也得到了提高;最后引导学生自己对知识进行梳理,培养学生的归纳能力,使学生进一步掌握了正比例的意义。
正比例的意义是一个非常抽象的数学概念性知识。因此,我从学生熟悉的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学具有丰富的现实基础。本节课的教学,主要体现以下几个特点:
一、把“分层”理念贯穿于整节课堂
学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。新课开始,我设计了生活中的一种情景,利用表一引导学生进行观察,并出示学习提示,让学生从不同角度说出自己所观察到的,初步渗透正比例的意义。在引导学生初步感知了两种相关联的量后,放手让学生采取小组合作的方式自学表二,并让学生在小组中讨论例题的共同点,从而归纳出正比例的意义。
在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。
二、关注学生的学习过程
数学学习是一个思考的过程,没有思考就没有真正的数学学习。新的数学课程标准倡导:引导学生以自主探索与合作交流的方式理解数学,解决问题。所以我在教学中利用表格,创设学生熟悉的系列生活情境,与正比例的意义进行联系。让学生独立填表,目的是让学生经历这样的一个过程,让学生在填表的过程当中,强化学生对于概念表象的建立。通过学生独立填表让学生几次感知“变”与“不变”,在感知“变”与“不变”过程中体会“相关联”,以此来理解正比例的意义。让学生通过观察分析、归纳概括、拓展提升等系列的学习活动,这样安排教学使学生经历了正比例意义的建构过程,并且采取数形的教学手段把具体的数据用图像的形式体现出来,使学生真正意义上理解了正比例的意义,经历用具体数据解释图像,用图像描述具体数据的过程,做到“数”与“形”的有机结合,以帮助学生构建立体的概念模型,并为今后函数知识的学习奠定了有力的知识基础。整个教学过程使学生在观察中思考,在思考中探索,在探索中交流,在交流中获得了新知。
“正比例的意义”教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,内容抽象,孩子们难以接受。学好正比例知识是学习反比例知识的基础。因此,使孩子们正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入。
数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。
2、在观察中思考。
小学生学习数学是一个思考的过程,“思考”是孩子们学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让孩子们通过观察两个相关联的量,思考他们之间的特征,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。
3、在思考中感悟。
新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们独立思考从而归纳出正比例的意义。
4、在练习中巩固提升
为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让学生自己研究圆的半径和圆有什么关系,正方形的边长和它的面积有什么关系,让孩子们在巩固本节课知识的同时,学会通过研究会判断,同时孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理,培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。可能自己在平时的教学中没有完全放手让学生自己讨论自己总结发言,所以在发言的时候学生还不能完全放开,显得有点拘谨,但通过后面的练习,使我意识认识到学生对于正比例的意义印象非常深刻,而原因正是上课方式的改变,所以在今后的教学中应多给学生自学研究的机会,在锻炼学生的同时也给自己减压。
素质教育目标
(一)知识教学点
1.使学生理解正比例的意义。
2.能根据正比例的意义判断两种量是不是成正比例。
(二)能力训练点
1.培养学生用发展变化的观点来分析问题的能力。
2.培养学生抽象概括能力和分析判断能力。
(三)德育渗透点
1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩*唯物主义观点的启蒙教育。
2.进一步渗透函数思想。
教学重点:
使学生理解正比例的意义。
教学难点:
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
教具学具准备:
投影仪、投影片、小黑板。
教学步骤
一、铺垫孕伏
用投影逐一出示下列题目,请同学回答:
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、探究新知
1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。
2.教学例1
(1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米??
(2)出示下表,并根据上述内容填表。
(3)边填表边思考:在填表过程中,你发现了什么?
学生交流时,使之明确。
①表中有时间和路程两种量。
②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米??时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
教师点拨:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:
两种相关联的量)
③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。
教师问:根据计算,你发现了什么?
引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。
教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)
④比值60,实际就是火车的速度。用式子表示它们的关系就是:
(4)教师小结:
刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总
3.教学例2
(1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
(2)观察上表,引导学生明确:
①表中有数量(米数)和总价这两种量,它们是两种相关联的量。
②总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小。
③相对应的总价和米数的比的比值是一定的。
④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:
(3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)
4.抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论,这两个例子有什么共同点?
(2)学生初步交流时引导学生明确:
①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。
教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)
③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。
(学生答不出来时,教师引导、点拨,并补充板书:两种量中)
(3)引导学生抽象概括出两例的共同点:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。
(4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。(补充板书:如果这成正比例的量正比例关系)
这就是我们这节课学习的“正比例的意义”(板书课题)
(5)看书11、13页的内容,进一步理解正比例的意义。
(6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。
(7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
(9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
5.教学例3
(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(2)根据正比例的意义,由学生讨论解答。
(3)汇报判断结果,并说明判断的根据。
教师板书:面粉的总重量和袋数是两种相关联的量。
所以面粉的总重量和袋数成正比例。
6.反馈练习
让学生试做第13页的做一做,并订正。
三、巩固发展
1.完成练习三第1题。
先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?
2.完成练习三第2题的(1)-(9)
先让学生自己判断,再订正。
四、全课小结(师生共同进行)
通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?
教学内容:成正比例的量
知识与技能:使学生理解正比例的意义,会正确判断成正比例的量。
过程与方法:使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一、揭示课题
1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
5、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1、教学例1
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200?......?252468
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:
y?k(一定)x
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号