当前位置:首页 > 教案教学设计 > 教学设计一等奖

鸽巢问题一等奖说课稿

日期:2022-05-29

这是鸽巢问题一等奖说课稿,是优秀的教学设计一等奖文章,供老师家长们参考学习。

鸽巢问题一等奖说课稿

鸽巢问题一等奖说课稿第 1 篇

一、教学内容:

  教科书第68页例1。

  二、教学目标:

  (一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

  (二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

  (三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  三、教学重难点

  教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

  教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

  四、教学准备:多媒体课件。

  五、教学过程

  (一)候课阅读分享:

  同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

  (二)激情导课

  好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

  (三)民主导学

  1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

  请你再把题读一次,这是为什么呢?

  要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

  对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

  那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

  课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

  方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

  刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

  那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

  方法二:用“假设法”证明。

  对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)

  方法三:列式计算

  你能用算式表示这个方法吗?

  学生列出式子并说一说算式中商与余数各表示什么意思?

  2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

  这道题大家可以用几种方法解答呢?

  3种,枚举法、假设法、列式计算。

  3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

  还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

  4、表格中通过整理,总结规律

  你发现了什么规律?

  当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

  5、简单了解鸽巢问题的由来。

  经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

  (四)检测导结

  好,我们做几道题检测一下你们的学习效果。

  1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

  3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  4、育新小学全校共有2192名学生,其中一年级新生有367名同学是2008年出生的,这个学校一年级学生2008年出生的同学中,至少有几个人出生在同一天?

  (五)全课总结今天你有什么收获呢?

  (六)布置作业

  作业:两导两练第70页、71页实践应用1、4题。

鸽巢问题一等奖说课稿第 2 篇

教学目标:

1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。

2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。

教学重点:了解简单的鸽巢问题,理解“总有”和“至少”的含义。

教学难点:运用“鸽巢原理”解决相关的实际问题,理解数学中的优化思想。

教学过程:

一、游戏激趣 导入新课

1.同学们看,老师手中拿的是什么?拿出大王和小王,剩下的牌中共有几种花色?

2.现在我们一起来玩猜花色的游戏,请5位同学到前面每人随意抽一张纸牌,抽完后不要让老师看到。

3.抽后老师大胆猜测:一副扑克牌,取出大王和小王,5人每人随意抽一张,至少有2张牌花色相同(课件出示)。

4.有些同学一定觉得老师只是凑巧猜对了,我们再抽一次,老师还大胆猜测:一副扑克牌,取出大王和小王,5人每人随意抽一张,至少有2张牌花色相同。如果老师猜对了,就给老师点掌声。

5.如果老师再换5名同学来抽牌,我还敢确定的说至少有2张牌的花色相同,这是为什么呢?其实这里面蕴藏着一个有趣的数学原理--抽屉原理,也叫鸽巢原理或鸽巢问题,这节课我们就一起来研究这个问题。(板书课题)

(设计意图:通过这个游戏激发学生学习本节课的好奇心,也使学生感受到数学和生活中的联系,知道学习本节课的重要性。)

二、呈现问题 自主探究

1.小红在整理自己的学习用品是有这样的发现(课件出示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。)学生齐读。

2.在这句话中你有什么不理解的吗?学生提出不理解的词语。

(1)不管:随意,想想怎么放就怎么放。

(2)总有:一定有。

(3)至少:最少,最起码。

师提问:最少2支指的是几支呢?具体来说。

2.把整句话翻译过来再说一遍。

(设计意图:让学生充分理解这句话的意思,为接下来的研究做好铺垫。)

2.你觉得这句话说得对吗?给同学们1分钟时间同学生静静思考一下。

3.现在同学用摆一摆、画一画、写一写等方法来验证这句话,老师出示自己的温馨提示。(课件出示:温馨提示:选择自己喜欢的方式验证,比如,同桌合作,用纸杯代替笔筒,用铅笔摆一摆,一人摆,一人记录。(注意:不考虑顺序。)

4.学生汇报验证的方法:

生1:利用图片来列举出几种放法

教师提问:我们来看这位同学的摆法,凭什么说“总有一个笔筒里至少有2支铅笔”呢?比2支多也可以吗?

教师小结:非常好,我们在观察这几种摆法,把符合要求的笔筒用彩色笔标出来:所以说不管怎么放总有一支笔筒里至少有2支铅笔。

生2:利用数字方法列举出几种方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)

我们一起圈出每种分法不少于2的数字。(表扬生2,方法更简单一些)

5.同学们像刚才把所有中情况都列举出来,这种方法就叫做列举法或枚举法。(板书)

6.除了这种枚举法,还有没有别的方法也能证明这句话是对的。

生:先假设每个笔筒中放1支铅笔,这样还剩1支铅笔,这时无论放到哪个笔筒,哪个笔筒就是2支铅笔了,所以我认为是对的。

师追问:你为什么要现在每个笔筒里放1支呢?

生:因为一共有4支笔,平均分后每个笔筒只能分到一支。

师追问:那为什么要一开始就去平均分呢?

生:平均分就可以使每个笔筒中的笔尽量少一点,如果这样都能符合要求,其他中情况都能符合要求了。

(设计意图:教师的追问让学生更明确为什么要平均分,平均分的好处是什么。)

7.这位同学的想法真是太与众不同了,我们为他鼓掌,谁听懂了他的想法,把他的想法在复述一遍。

8.想这位同学的方法就是假设法。(板书:假设法)

9.到现在为止,我们可以得出结论了。

三、提升思维 构建模型

1.刚才我们通过不同的方法验证了这句话是正确的,现在老师把题目改一改,同学们看看还对不对了,为什么?(课件出示:把5支铅笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。)生回答并说明理由。

2.课件继续出示:(1)把6个苹果放进5个盘子里呢?(2)把10本书放进9个抽屉中呢?(3)把100只鸽子放进99个笼子中呢?

3.我们为什么都采用了假设法来分析,而不是画图用枚举法呢?(枚举法虽然直观,但是有一定的局限性,假设法更具有一般性)

(设计意图:通过出示更大的数,让学生感受到用假设法的方便性,实用性,同时引出的优化的思想。)

4.在数学课堂上我们通常采用更便于我们解决的方法来解决问题,这是一种优化的思想。(板书:优化思想)

5.引出物体数、鸽巢数、至少数,学生观察,你有什么发现吗?(当物体数比鸽巢数多1时,总有一个鸽巢里至少有2个物体。)

6.回过头来我们看课前老师猜测的扑克牌的游戏,谁能解释一下是怎么回事呢?看来并不是老师神奇,而是鸽巢问题神奇啊。

7.同学们今天的发现是德国数学家狄利克雷最早提出的:课件介绍有关鸽巢问题的来历。

四、解决问题 练习巩固

通过学生的努力,我们一起研究出鸽巢问原理,现在老师出几道题看同学们是否真的学会了。

1.5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2.把( )本书放进3个抽屉,不管怎么放,总有一个抽屉至少放进2本书。()中能填几呢?

(设计意图:习题2锻炼学生的逆向思维,同时也为下节课的学习埋下了伏笔。)

五、课堂总结

这节课的探究学习中,我们一起经历了与德国数学家狄利克雷一样的伟大发现,你有什么收获呢?

板书设计:

鸽巢问题

枚举法 假设法

(列举法) (平均分)

优化思想

鸽巢问题一等奖说课稿第 3 篇

 教学目标

  1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

  2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

  3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

  教学重点

  经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

  教学难点

  理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

  教具准备:相关课件相关学具(若干笔和筒)

  教学过程

  一、游戏激趣,初步体验。

  游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

  [设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。]

  二、操作探究,发现规律。

  1.具体操作,感知规律

  教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?

  (1)学生汇报结果

  (4,0,0)(3,1,0)(2,2,0)(2,1,1)

  (2)师生交流摆放的结果

  (3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

  (学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)

  [设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的`筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。]

  质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?

  2.假设法,用“平均分”来演绎“鸽巢问题”。

  1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?

  学生思考——同桌交流——汇报

  2汇报想法

  预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

  3学生操作演示分法,明确这种分法其实就是“平均分”。

  [设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。]

  三、探究归纳,形成规律

  1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。

  [设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]

  根据学生回答板书:5÷2=2……1

  (学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)

  根据学生回答,师边板书:至少数=商+余数?

  至少数=商+1?

  2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)

  ……

  7÷5=1……2

  8÷5=1……3

  9÷5=1……4

  观察板书,同学们有什么发现吗?

  得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。

  板书:至少数=商+1

  [设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。]

  师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

  四、运用规律解决生活中的问题

  课件出示习题.:

  1.三个小朋友同行,其中必有几个小朋友性别相同。

  2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。

  3.从电影院中任意找来13个观众,至少有两个人属相相同。

  ……

  [设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]

  五、课堂总结

  这节课我们学习了什么有趣的规律?请学生畅谈,师总结

鸽巢问题一等奖说课稿第 4 篇

 “鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识,“鸽巢”问题教学反思。例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。

  兴趣是学习最好的老师。所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。借机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号