当前位置:首页 > 教案教学设计 > 教学设计一等奖

说课比赛一等奖说课稿数与形

日期:2022-06-08

这是说课比赛一等奖说课稿数与形,是优秀的教学设计一等奖文章,供老师家长们参考学习。

说课比赛一等奖说课稿数与形

说课比赛一等奖说课稿数与形第 1 篇

教学目标:

1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。

2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。

3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。

教学重点、难点:积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。

教学准备:课件,不同颜色的小正方形。

学具准备:不同颜色的小正方形,吸铁板,作业纸。

教学过程:

一、谈话导入,出示课题

教师:最近老师发现,我有一项非常神奇的本领。什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。你们信吗?

教师:不信也没关系,我们现场来比一比。

师生比赛,看谁算得快。

教师:这个方法快吗?你们想不想也像老师一样算得快呢?

教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。

【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。

二、动手实践,以形解数

1.教师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。

教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?

教师:先来两个加数的,再来三个加数的。请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。

2.小组动手操作,教师巡视。

3.学生汇报,全班交流分析。

先讨论1+3,再讨论1+3+5。

教师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。除了这两组同学的汇报,你们还有其他发现吗?

学生:算式中加数的个数是几,和就等于几的平方。

教师:你们认同他的方法吗?能不能举个具体的例子来说一说?

学生1:1+3+5+7+9=52。

学生2:1+3+5+7+9+11=62。

教师:那我们从头来看一看。请看屏幕:1+3+5+7+9=(52)。

教师:一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。

教师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。

4.练习。

(1)1+3+5+7+9=( )2;

1+3+5+7+9+11+13=( )2;

____________________________=92。

教师请学生独立完成,然后全班核对答案。

(2)利用规律,算一算。

1+3+5+7+5+3+1=( );

1+3+5+7+9+11+13+11+9+7+5+3+1=( )。

全班交流,请学生说明计算结果和原因。

5.小结。

教师:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?

教师:这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。

【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。

三、练习巩固

1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?

学生回答,课件出示答案。

教师:请你认真思考、观察,上边的图形和对应的数之间有什么规律?四人小组交流。

教师:刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?

教师:我们一起来看一看。第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?

教师:如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?你能写出来吗?在草稿本上写一写。

教师请学生介绍,说说是怎么算出来的。

教师:观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。找到了其中的规律,解决问题就清晰、容易多了。

2.课件出示教材第109页练习二十二第2题。

(1)教师:上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?小组交流一下。

全班交流。

学生:第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。

学生:是第几个图形,其中就有几行小圆。

教师:照这个规律往下画,你能画出来吗?图形下方的数字表示的是什么?第5个、第6个、第7个图形下方的数,你能不能很快写出来?

教师请学生独立完成在练习纸上。

教师请学生汇报,说说是怎么得到结果的。

教师:图形中的最后一行是第几行?含有几个小圆?

教师:现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?一共有多少个小圆呢?现在我们就不画图,算一算,第10个图形下方的那个数是多少?能算出来吗?动笔试一试。

展示学生作品,请学生介绍方法。

(2)教师介绍“三角形数”“正方形数”。

教师:同学们发现没有,55个小圆能排成什么图形?(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。

教师:回过头来看看。3、6、10、15、21呢?它们是否也具有同样的特点?

教师:在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。请同学们想一想,28后面的下一个三角形数是多少?(36)

教师:大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。像这样的数,我们称之为“正方形数”。

【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。

四、回顾反思

教师:今天这节课,我们一起学习了“数与形”,说说你有什么收获?

说课比赛一等奖说课稿数与形第 2 篇

教学内容:

北师大版小学数学第十二册第66页—67页第二课时。

教学目标:

1、知识与技能方面:使学生了解数与形之间密切的联系,知道三角形数和正方形数等特点。

2、过程与方法方面:学生通过观察思考、讨论探究等活动,加深对数与形的认识,培养学生多角度观察和抽象概括的能力。

3、情感态度价值观方面:通过再现杨辉三角形、三阶幻方及古今中外数学家等史料,使学生初步感受数学文化的博大精深,培养学生的爱国情感。

教学内容:

一、 课前活动

猜数学谜语,渗透“几何”在古代数学书里的涵义。

二、 新课

1、情境导入

你们能给大家说说你在生活中见到的数吗?生活中,你们还见到过哪些图形?

2、认识三角形数

① 课件出示三角形数

② 这些数有什么特点?

③ 根据这些数的特点,你们能给它们取个名字吗?

④ 介绍古希腊数学家毕达哥拉斯。

⑤ 第100个三角形数是多少?你是怎样算的?

⑥ 介绍德国数学家高斯。

3、认识杨辉三角形。

① 课件出示杨辉三角形。

② 学生同桌合作:找一找这个三角形的秘密,完成作业纸的第一题。

③ 展示作业。

④ 介绍法国数学家帕斯卡。

⑤ 介绍我国数学家杨辉和杨辉三角形。

4、认识正方形数。

① 课件出示正方形数。

② 你们发现规律了吗?

③ 根据这些数的特点,你们能给它们取个名字吗?

5、认识三阶幻方。

① 课件出示三阶幻方。

② 学习三阶幻方填写口诀。

③ 介绍洛书的由来。

三、 课堂总结

1、你们都有收获吗?

2、介绍数学家华罗庚。

说课比赛一等奖说课稿数与形第 3 篇

一、教学内容

人教版六年级上册数学第八单元数学广角——数与形(107页 例1)

二、教材分析

数形结合是一种非常重要的数学思想,把数与形结合起来解决问题,可使复杂的问题变得更简单,使抽象的问题变得更直观,数与形密不可分,可用数来解决形的问题,也可用形来解决数的问题。本课时是使学生通过数形的对照,利用图形直观形象的特点探索出从1开始的连续奇数之和与正方形数的关系,表示出数的规律。在教学过程中,让学生通过解决问题体会到数与形的完美结合。

三、学情分析

小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。进入中高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节教材在编排上体现了先数后形的顺序,把形象真正放在支撑地位,从而为培养学生的逻辑能力而服务。

四、教学目标

1、知识技能:使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律;使学生会利用图形来解决一些有关数的问题;

2、数学思考:让学生经历观察、猜想、验证、思考、归纳、合作等活动,发现图形中隐含着数的规律,培养学生数形结合的思想意识,体会和掌握数形结合、归纳推理等基本的数学思想;

3、问题解决:使学生能够借助形解决一些与数有关的问题,使学生建立通过数形结合方法解决数学问题的意识,掌握数形结合解决简单问题的方法;

4、情感态度:培养学生通过数形结合来分析思考问题,从而感悟数形结合思想,体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力,提高解决问题的能力。

五、教学重点、难点

教学重点:借助“形”感受与“数”之间的关系,引导学生探索、发现规律,培养学生用“数形结合”的思想解决问题。

教学难点:在探究过程中积累基本的活动经验,感悟数形结合、归纳推理的数学思想。

六、课前准备:

教具准备:课件,正方形若干

学具准备:正方形若干

七、教学过程

(一)游戏导入,引出课题

1、师:同学们喜欢做游戏吗?(生:喜欢)那我们来做个猜数游戏。老师在来给大家上课之前呢,特意去了我们的一年级,我给一年级小朋友一个数,让他们根据我给的数,画出图形。下面就请同学们根据一年级小朋友画的图形,猜猜我给他们的是个什么数。准备好了吗?(生:准备好了)好请看大屏幕!

2、多媒体逐个呈现4幅不同的图形,让学生根据图形猜数。

3、师:通过刚才的小游戏,我们知道了数和形是有关系的,一个数可以记录不同的形 ,一个形也可以表示不同的数,数和形是相互依存,互相帮助的。下面就让我们走进数与形,来进一步共同探索数与形之间的关系。(教师板书:数与形)

(设计意图:让学生通过猜数游戏,直观感受到数与形之间是有关系的;另外,通过游戏的设置,让学生乐于参与到数学活动中来,打消研究抽象知识的畏惧心理,激发学生的学习兴趣。)

(二)激趣质疑,探索规律

1、口算激趣质疑

师:请大家在5秒之内算出这个加法算式的得数

(大屏幕出示:1+3+5+7+9+11+13+15+17= )

同学们算不出结果,师适时激趣:看来同学们都没能在规定的时间里算出来,因为时间太短了。老师有个方法,可以让你在很短的时间快速的算出这样加法算式的得数,想知道怎么算吗?(生:想)老师是把这样的算式想象成图形了!有的同学问了,算式还能想成图形?当然!下面就让我们一起来共同探索其中的奥秘!

(设计意图:初步感知算是特点,激发学生的探索欲望)

2、探究实践,发现规律

(1)借数摆形,借形解数

师:(在黑板上先贴1个小正方形)请看大屏幕,这是?生:1个小正方形。(板书1)

师:再至少加上几个小正方形就组成一个新的正方形?生:3个小正方形。(指名到黑板上粘贴新的正方形)现在一共有几个?生: 4个。

师:是算出来的还是数出来的?生: 数出的、算出的。

师:数一数生:数

师:算的同学是怎么算的呢?生: 1+3=4 (板书)

师:在1+3=4的基础上,再至少加上几个小正方形就组成一个新的正方形?生:5个小正方形。(指名到黑板上粘贴新的正方形)现在一共有几个?生:9个。

师:是算出来的还是数出来的?生: 数出的、算出的。

师:数一数生:数

师:算的同学是怎么算的呢?生: 1+3+5=9 (板书)

师:还能继续加吗?生:能!再至少加上几个小正方形就组成一个新的正方形?生:7个小正方形。(大屏幕出示新的正方形)现在一共有几个?生:16个。

师:是算出来的还是数出来的?生: 算出的。

师:怎么算的呢?生: 1+3+5+7=16 (大屏幕出示)

师:下一个该加几了?生:9. 一共多少个?生:25个。怎么算?

生:1+3+5+7+9=25 (大屏幕出示)

师:还能继续摆吗?生:能!

师:摆的完吗? 生:摆不完

师:摆不完,我们就用省略号来代替。

(设计意图:让学生经历动手操作、思考、猜想、验证过程,培养学生的想象力和逻辑推理能力。)

(2)探索数的规律

大屏幕出示加法算式:

小学六年级上册数学《数与形》教学设计

师引导学生观察:每个算式里的数都有什么特点?

学生集体交流,得出“都是从1开始的连续奇数相加”的结论。

大屏幕继续出示:

小学六年级上册数学《数与形》教学设计

师引导学生观察讨论:结合对应的图形,每个算式的得数都有什么特点?和拼成的小正方形有什么联系?

学生小组讨论,集体汇报,最后总结出结论:从1开始的连续奇数相加,和等于加数个数的平方。

师进行图形结合小结:原来我们可以把从1开始的连续奇数相加的加法算式想象成什么?(正方形)想象成边长是几的正方形?(有几个加数相加,正方形的边长就是几)加法算式的结果怎么算?(有几个加数,就是几的平方)

(设计意图:本环节意在使学生通过对数的观察、对形的观察、数形结合观察,经历数学思考过程,得出规律,在探索规律过程中培养数学思维这一核心素养;同时,也让学生在观察思考过程中,逐步搭建数形结合解决问题的模型。)

(三)加深理解,应用规律

师:我们利用见数想形,由形算数的方法,找到了计算这一类题目的方法,掌握了这个方法,我们也能很快的算出这样算式的结果了!我们试试吧!

大屏幕出示,学生口算解答

1、你能利用规律直接写一写吗?

1+3+5+7+9+11+13+15+17=( )

小学六年级上册数学《数与形》教学设计 =10²

2、请根据得出的规律算一算

1+3+5+7+5+3+1=( )

(设计意图:让学生能够根据所探索出的规律解决实际问题)

(四)应用数形结合方法解决问题

师:刚才我们运用数形结合的方法得出了规律,并应用规律解决了问题。其实,和这个规律相比,这种数形结合的方法更是重要,掌握了这种方法,我们能解决许多的数学问题。下面就让我们尝试用这种方法解决一下下面的问题。

大屏幕出示以下两个问题,让学生任选其一来完成,剩下的一个留作课下完成。

1、请用数形结合的方法计算出下面算式的得数并说明

1+2+3+4+5+……+100=( )

2、

小学六年级上册数学《数与形》教学设计

(设计意图:让学生在老师协助尝试用数形结合方法解决问题,体验到数形结合解决问题的方便快捷和趣味性)

(五)总结收获

师:刚才我们用数形结合的方法解决了好多问题,其实数形结合的方法在我们的学习中早就出现过了(大屏幕出示以前学过的数形结合:借助小棒认识100以内数、借助图形学习分数乘法、借助线段图学习植树问题等)通过这节课的学习,你有了哪些新的收获,和大家分享一下!

生自由发言,分享自己的收货

(设计意图:通过呈现以往学过的数形结合知识,让学生知道数形结合在学习中随处可见,数形结合与数学的学习密不可分;通过学生谈收获,方便教师了解学生的掌握情况)

(六)拓展提升

(大屏幕呈现华罗庚关于对数形结合的看法)

师和学生共同感受数形结合这一优秀的数学文化,并将这一数学文化传承下去。

(设计意图:通过呈现华罗庚关于数形结合思想的看法,拓宽学生的知识面,丰富学生的数学文化,培养学生的数学素养)

附:板书设计

数 与 形

小学六年级上册数学《数与形》教学设计 小学六年级上册数学《数与形》教学设计 小学六年级上册数学《数与形》教学设计

相结合

小学六年级上册数学《数与形》教学设计

八、教学反思:

(一)联系学生已有的数学经验,为学生探究新知搭建桥梁

数学是抽象的,这些抽象的内容对于小学生来说,接受起来是相当的困难的,就像这“数与形”,不用说是学生,就连老师一看到这个题目,就不知道该从何教起。如果我们课堂伊始就直接呈现这些内容,会让学生产生胆怯畏惧的心理,这种心理一旦产生,就很可能造成学生对所要学习的知识索然无味,不利于学生思维的开拓。为了杜绝这种状况的发生,我在课堂伊始从学生已有的知识经验入手,设计了看图猜数的小游戏,通过游戏不但激起了学生的兴趣,而且让学生意识到原来在一年级的时候,就已经体验到数与形是有关系的,一下就消除了对“数与形”这个抽象课题的抵触心理。

通过这一环节的设计,在学生心理搭建数学模型,让学生逐渐懂得数学知识的学习是循序渐进的,新授知识是可以利用以往的学习经验探究得出的。让学生能够逐渐的形成数学技能,但凡遇到未接触过的数学问题,都知道去联系已有的学习经验,去探究解决方法。

(二)以学生为主体,创设情境,激发学生的探索欲望

教师创设情境,激发学生的探究欲望,吸引学生对新授知识进行探索。只要激起学生的探究欲望,就能让下面的探究过程事半功倍。那么这个探索的欲望如何激起呢?这就需要我们以学生为主体,从学生的角度出发创设情境,让学生产生浓厚的兴趣去参与研究。

通过这一环节的教学,目的就是激发学生学习数学的兴趣,激起学生对即将出现的未知的知识的探究欲望,让学生想学数学,爱上数学课。《数与形》教学中,我通过猜字游戏为学生做好知识铺垫后,创设了在几秒钟之内快速的算出算式结果的情境。学生们算不出,这时教师神秘的抛出老师有窍门,想知道吗?学生当然会想知道,由此吸引学生进一步探索求知。

(三)充分为学生提供自主探究的机会,在探究过程中培养核心素养

创设问题情境,激发起学生的探索欲望之后,就要引领着学生去探索研究了。在这一环节,教师在示范引领学生进行探索后,要给学生提供充足的自主探索的机会。这一环节的安排,目的是让学生通过动手操作、自主探索、合作交流等方式,锻炼数学思维,逐步培养学生的逻辑推理、抽象概括、数学运算、数据分析、数学直观想象等核心素养。《数与形》中整个规律,也就是算理的探究过程,就是在教师的引领下,先为学生逐渐搭建数形结合思考模式,然后通过学生自主想象、动手拼摆,进行验证。学生通过拼摆验证后,教师引导学生通过观察分析数据,最终探究出其中蕴含的规律。

(四)搭建学生展示交流平台,经历算法多样化到最优化过程

为学生搭建展示交流的平台,让学生充分的将自己的想法或做法表达和展示出来,在这个全班展示的过程中,教师适时地给予指引,帮助学生在原有思维的基础上,去粗取精,在算法多样的呈现之后,最终得到最优化的方法。

这个环节的设置,目的是落实数学建模素养,让学生通过经历算法多样化到优化的过程,在头脑里建筑解决这一类问题的数学模型。同时在这一环节,还锻炼了学生的数学表达能力,抽象概括能力。《数与形》中,让学生通过展示自己和同桌的交流成果,最终优化出规律。

在这一环节中,不但培养了学生完整的表达自己想法能力,而且让他在展示过程中,教师通过适时地引导,让学生建立数形结合能更加容易的解决问题的思考模式,为在以后的学习中遇到数的难题,能见数想形打下了基础。

(五)练习安排逐层递进,由浅到深,由易到难

学生初建解题模型后,就要运用模型解决问题,也就是巩固练习环节。在这里,我安排的练习题是有针对性,有层次性的,由浅到深,由易到难。《数与形》的练习安排,本着先直接运用规律,再变化方式运用规律,然后在熟练运用规律的基础上进行拓展,安排对得出规律的数形结合方法的运用。

(六)在总结归纳、拓展延伸中渗透数学文化思想

巩固练习之后,就是总结拓展环节了,这里的总结我安排学生先对自己的收获进行小结,这样有利于教师了解学生的掌握情况。学生小结后,教师进行提炼性的归纳总结,相当于帮助学生对本节课的知识进行了梳理,最后是拓展延伸,在拓展延伸中传承数学思想,丰富学生的数学文化。

作为教师,我们除了是知识的传授者之外,更重要的是文化的传承者。虽然文化的传承不是单凭我们一己之力就能完成的,但我们应该有这样的意识,有意识去做,有意识经常去做,从由一个人有意识的做,到大家都去做,长此以往,我们的学生,包括我们自己,都会有大的变化。

说课比赛一等奖说课稿数与形第 4 篇

教学内容:

人教版小学数学教材六年级上册第107页例1及相关练习。

教材分析:

《数与形》是人教版六年级数学上册教材第八单元《数学广角》的内容。它是教材新增的内容,其意图是让学生通过数与形的对照,探究发现图形中隐藏的数的规律,进一步体会数与形之间的内在联系,感受用形来解决数的有关问题的直观性与简捷性。并能把数形结合的思想迁移到解决其他一些实际问题,帮助学生积累经验。

教学目标:

知识与技能:让学生自主探究体会数与形的联系,寻找规律,发现规律,并会应用规律。

过程与方法:在学生经历利用图形探究数的规律的过程,使学生加深对数形结合思想方法的认识,充分感受数形结合在小学数学学习中的应用。

情感态度价值观:在解决数学问题的过程中,通过以形想数的直观生动性,体会和掌握数形结合基本的数学思想,感受数学的趣味性与魅力。

教学重点:

感受数与形可以互相转化,树立数与形的结合是数学解题重要的思想方法。

教学难点:

寻找和发现数与形相互转化的途径与方法。通过数与形的转化,认识到数形结合可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。

教学学具准备:

电子白板、课件。

教学过程:

一、谈话导入,引入新课

1、出示课件复习题1、复习题2,引导学生回忆旧知,知道图形与数字有紧密的联系。

2小结:在学习中借助图形可以使问题形象化,今天这节课我们就用数形结合的方法来找出数的规律──数与形(板书)。

二、以形助数,探究规律

1、出示例1

(1)课件出示例题。

(2)数一数各有几个正方形?怎样用加法算式表示正方形的个数?

2、数形结合,总结规律

(1)、用正方形怎样表示1+3呢?(边说边出示课件)这个图除了用1+3来算还可怎么算?(2×2)说一说2×2在哪里?(每行有2个有2行,就是2个2,即2×2,也就是22)。

(2)、小组合作,师巡视指导

1+3+5又该怎么拼?请大家动手画一画。

3.汇报展示

你们能拼成正方形吗?怎么拼?加数1、3、5在哪?

你能解释1+3+5用3的平方来算吗?(横着竖着都是3个)

4、讨论1=( )2

5、师说明:像1、4、9、16这样的数字,它们有一个共同的名字,叫正方形数,又叫平方数。

6、引导学生发现规律。

请同学们认真观察算式,看看你有哪些发现,跟大家一起交流一下。

师小结:从1开始的几个连续奇数相加的和就是几的平方。

三、变式练习,应用规律

1、1+3+5+7+9=( )2;

1+3+5+7+9+11+13=( )2;

____________________________=92。

2、1+3+5+7+5+3+1 =( )

1+3+5+7+9+11+13+11+9+7+5+3+1=( )

3、课本108页“做一做”第2题。

四、总结全课:同学们,通过今天的学习,我们可以发现数形结合可以使某些抽象的数学问题直观化、生动化,当我们遇到复杂数的问题不妨可以借用图形来解决,当然从直观的图形中我们也能发现许多许多数的规律,你们说是吗?最后,我们一起来看一下华罗庚爷爷是怎样来评价数形结合这一思想方法的(课件出示)。好,下课!

板书设计: 数与形

1=( 1 ) 2 =1

1+3=( 2 ) 2=4

1+3+5=( 3 ) 2 =9

1+3+5+7=( 4) 2 =16

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号