当前位置:首页 > 教案教学设计 > 教学设计一等奖

烙饼问题教学设计一等奖先学后教

日期:2022-04-29

这是烙饼问题教学设计一等奖先学后教,是优秀的教学设计一等奖文章,供老师家长们参考学习。

烙饼问题教学设计一等奖先学后教

烙饼问题教学设计一等奖先学后教第 1 篇

一、教学目标

  (一)过程与方法

  1.通过简单的事例,使学生理解三张饼的最佳烙饼方法。

  2.在解决问题的过程中,使学生认识到解决问题策略的多样性,渗透解决问题最优方案的意识。

  (二)情感态度和价值观

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  二、教学重难点

  教学重点:使学生能从解决问题的多种方案中寻找出最优方案,初步体会优化的思想,形成优化的意识。

  教学难点:寻找出解决问题的最优方案,形成优化的意识,提高解决实际问题的能力。

  三、教学准备

  课件、圆片等

  四、教学过程

  (一)情境创设,揭示课题

  师:请大家猜猜老师的平时业余爱好有哪些?(出示老师在厨房里烙饼的情境)

  师:厨房里会有什么数学问题呢?引出:“每次只能烙两张饼,两面都要烙,每面3分钟。”

  师:根据以上信息请同学们独立思考如何烙一张饼?两张饼?各需要多长时间?

  【设计意图】从简单入手,通过烙一张与两张饼的时间对比,使学生充分认识到在同时能够烙两张饼的锅里,一次烙一张饼在时间上是显得多么的浪费,为下一个环节“三张饼“的最优化探究作好铺垫。

  (二)探究新知

  1.实践操作,探求策略

  (1)探究双数饼

  师:“烙1张饼要用多少时间呢?”

  生:6分钟。

  师:“烙2张饼最少要用多少时间呢?怎样烙?”

  生:“还是6分钟。把两个饼一起放进锅里,先烙正面,再烙反面。”

  师:“如果烙4张饼最少要用多少分钟?怎样烙?”

  生1:先烙2张,用6分钟,再烙两张,6分钟,两个6分钟共12分钟。

  生2:烙1次用3分钟,4张饼共8个面,每次两个面,共烙4次,4×3=12分“6张呢?8张呢?请你思考一下,把你的方法在表1里写一写。交流方法。

  小结:当饼的个数是双数时,怎么计算时间?所需时间与烙2个饼所需时间有什么关系?

  教师小结:“刚才我们都是每次烙两个饼,前两个饼的两面都烙熟后,再烙后两个饼。

  【设计意图】抓住重点词“同时”“节省时间”,渗透优化的思想。通过老仪仗兵让学生进行比较,明白“同时烙两张”会“节省时间”,从而初步感知“优化的思想”。

  (2)探究单数饼

  师:“现在要烙3张饼,最少要用多少时间呢?怎样烙?”

  【预设】

  如有学生提出反对意见:“不对!烙3个饼不应该是12分钟,只要9分钟。”

  师:“你为什么认为只要9分钟?”

  生:“如果像他这样烙,在烙第三个饼的时候,锅的一半位置是空着的,这不浪费了时间吗?我把前两个饼烙熟一面后,马上换上第三个继续烙;然后将取出的那一个放回锅里和第三个一起烙另一面。锅就不会有空位,所以只要9分钟。”

  ①合作探究

  师:“你们听明白他的意思了吗?这种方法是不是行得通呢?大家动手试一下吧!为便于操作,建议各小组在试验中给每个饼编号、并记录烙饼步骤及所需时间。”

  (如没有学生想出这种最佳的方法,教师可以让学生小组讨论然后汇报。)

  ②交流汇报,请一个小组上台用“饼”演示。

  ③用课件小结:

  第一次:烙1、2号饼的正面,用3分钟。

  第二次:把2号饼暂时取出,把3号饼放入,烙1号饼的反面和3号饼的正面,又用3分钟。第三次:取出1号饼,放入2号饼,烙2、3号饼的反面,用3分钟。

  一共用9分钟。

  师:这种烙法为什么会节省时间呢?

  我们注意了充分利用锅,不让它有空的时候,所以节省了时间,今天我们研究的就是怎样合理安排时间,板书课题。

  【设计意图】如何尽快地烙三张饼,是本节课的难点。这里通过让学生自己去动手试一试,烙一烙,说一说的方法,让学生认识到尽量不让锅空着才是最优方案。使学生在实践中感悟到解决问题策略的多样化与方法的合理性。

  ④探究单数饼计算时间方法

  师:“那么烙5个饼你打算怎么烙?先烙几张?再烙几张?最少要用多少时间呢?

  生:先烙2张用6分钟,再烙3张用9分钟,一共15分钟。

  师:烙7个饼呢?……”自己试着写一写,同桌互相说一说。

  交流汇报。

  师:“当饼的个数是单数时,所需时间有什么规律?怎么烙?”

  【预设】

  生1:“只有烙1个饼时锅才空着一部分,而烙两个以上的饼都有可通过合理安排始终不让锅里出现空位。所以每增加一个饼,时间只增加3分钟。”

  生2:“实际上烙2张也好,3张也好,都是为了使这口锅在烙饼时一直不会有空位。”

  师总结:为了能节省时间,我们要最大限度的利用时间和空间。

  【设计意图】以两三个饼的最优化方法为基础,拓展“4、5、6、7“甚至更多的最优化方案,这里完全放手让学生去研究发现规律,进一步体现了学习的

  (四)总结

  今天我们学习了怎样合理安排时间,说说学习感受。

  解决问题的方法很多,我们要善于思考,找到最好的方法,提高做事的效率。

  【设计意图】此环节中“今天你有什么收获吗?”这个问题的提出,主要是想培养学生整理、归纳的意识和习惯,提高学好数学的自信心。

烙饼问题教学设计一等奖先学后教第 2 篇

教学目标

  基础目标

  1.通过简单的实例,初步体会运筹思想在解决实际问题中的应用。

  2.认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  发展目标

  1.通过实例理解优化的思想,形成从多种方案中寻找最优方案的意识,提高解

  决问题的能力。

  2.感受数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题

  教学重点:体会优化思想

  教学难点:理解烙3张饼的最佳方法。

  教学准备课件制作、确定分组形式

  教学形式自主探究、小组合作(组内异质,组间同质,按学生能力由低→高依次编号①②③④)

  教学过程

  小班特征活动预设

  引入

  一、课前谈话,激发兴趣。

  1.同学们,人有两大宝,你知道是什么吗?猜猜看。(双手和大脑

  2.说得非常正确,今天我们就用自己的双手合大脑来解决生活中的一个数学问题,好不好?

  二、创设情境,解读信息。

  1.(板书:饼)饼,你吃过吗?吃过哪些饼呢?

  2.(板书:烙)“烙”,是指放在器物上烤熟的意思,烙饼是把饼放在器物上烤熟。这节课,我们一起来研究和学习烙饼问题。

  三、自主探究,研究烙法。

  探究双数张饼的最优烙法

  1.课件出示图:这位阿姨家今天来了好几位客人,阿姨要烙饼招待客人,我们一起帮阿姨烙饼好吗?你从图中读懂了哪些数学信息?(最多烙2张、两面都烙、每面3分钟)

  (1)烙一张饼最快要几分钟呀?你是怎么想的?请同学们把一只手当饼,数学书当锅,一起演示烙的过程。

  嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了。

  烙了计策?听到几声嗤啦声,烙了几次?

  (2)烙两张饼最快要几分钟呢?最快是什么意思?

  谁来演示?

  (3)为什么烙一张饼和烙2张饼的时间都是6分钟(一样多)呢?可以同时烙,同时烙有好处吗?“同时”这两个字用得好。老师给他写下来

  现在,我们一起来烙2张饼(嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了,听到几声嗤啦声,烙了几次?)

  (4)你可以将烙饼的过程写下来或画下来吗?试试看。

  2.(1)有了刚才的经验,烙4张饼最少需要几分钟呀?你又是怎么想的?

  (2)同桌再用双手做饼,来烙4张饼,开始!学生动手操作4张饼的烙法。请同学上台演示。烙了几次?

  3.(1)现在我们已经有很多烙饼经验了,烙6张饼要几分钟呢?你又是怎么想的?(6+6+6=18分钟)

  (2)谁愿意到黑板上用手做饼,烙给大家看一看。

  指名学生上台,在黑板上画好的圆圈里演示6张饼的烙法。

  4.总结偶数张饼的烙法:两张两张同时烙。

  请你仔细观察偶数饼的烙法:你发现了什么秘密?

  四、合作交流、探究烙法。

  烙三张饼问题的优化

  1.爸爸回来了,那3张饼最少要几分钟呢?要达到最快,我们要考虑什么?把象棋当作饼,摆一摆,并把你的过程写下来或画下来。

  要求:(1)先独立思考

  (2)小组讨论。

  小组轮流说说自己是怎么安排的?烙了几次?自己的方案一共需要多长时间烙完?

  记录员负责纪律你们组的方法。

  汇报员准备汇报

  【预设】方法一:一张一张地烙,共18分钟;

  方法二:先烙两张,再烙一张,共12分钟;

  方法三:先烙1、2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2、3号饼的的反面,有9分钟。

  【机动】如果学生想不到第三种方法则进行启发引导:

  在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?

  (3)讨论:

  ①上面三种方法是否都可行?哪种方法最好?为什么?

  ②为什么这样烙只需要9分钟?一开始的烙法有什么问题?

  (一开始的烙法中,烙第三张饼时锅的另一半资源(烙的位置)浪费了。而交替烙则没有这个问题。)没错。交替烙最大限度地使用了锅的资源,从而节约了烙的时间。

  小结:我们称这种最省时间的方法为烙3张饼的“最佳方法”

  (4)好,一个同学的2只手当作2张饼,另一个同学的1只手当作1张饼,把2本书叠在一起当作锅,同桌合作烙3张饼,开始!同桌合作,开始烙饼。

  2.下面该烙几张饼啦,5张饼,四人小组讨论一下,看哪个小组烙的最快。

  预设:方法一:3+29+6=15分钟

  方法二:演示同学们看明白了吗?

烙饼问题教学设计一等奖先学后教第 3 篇

【课题】:烙饼问题

  【课程标准】:会独立思考,体会一些数学的基本思想。

  【课标解读】:

  行为动词:“体会”,其同类词“体验”。“体验”是指参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。核心词是“数学思想”,这里指解决烙饼问题的优化思想。

  由此可以看出:课标对这部分知识的要求可以分为两个层次,第一个层次是指在给定的数学活动中寻求、掌握解决“烙饼问题”的方法,在运筹方法的应用中,体会解决问题策略的多样性;第二个层次是在寻求解决“烙饼问题”的方法的过程中,培养学生形成寻求解决问题最优方案的意识,渗透优化的数学思想方法。

  【教材分析】:

  教材的地位与作用:“烙饼问题”是合理安排时间的经典问题。这个内容的学习目的是拓宽学生的视野,使学生有一个睿智的头脑,从整体上提高学生的数学素养。它将与生活密切相关的数学问题呈献给给学生,凸显了数学的应用价值,有利于提高学生学习数学的兴趣。

  教材编写的特点:

  1、内容的选取比较有典型,体现数学的应用价值。“优选法”和“统筹法”是人类社会宝贵的精神财富。“烙饼问题”非常有意义,它可以使学生充分感受到数学发展对社会发展的作用,体会数学的应用价值。

  2、情境的创设贴近学生的生活实际。“烙饼问题”是很现实的问题,借助这样的素材来学习复杂的统筹问题和优选问题,学生比较容易接受。

  3、注意由浅入深地安排学习任务。在思维层次上由易到难,逐步提高。

  【学情分析】:

  四年级的学生已经有了初步的解决问题的经验,在日常生活中,都具备了解决问题的基本方法,而且还会找到解决问题的不同策略,但这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。为了制定出切合实际的教学目标,对学生进行了课前测试。

  前测题样及分析:

  1、小华帮妈妈做家务:拖地10分钟,用洗衣机洗衣服25分钟,擦桌子8分钟,烧水10分钟。小华做完上面的家务至少需要多少时间?

  2、妈妈烙饼,烙一张饼的一面需要2分钟,每张饼烙2面。锅一次可以烙2张饼,那么烙2张饼至少需要多少时间?3张呢?

  对于第一道题,有39人全对,正确率是92.6%,这说明学生对统筹方法的理解与应用掌握的很好,知道做事要节约时间,而且知道怎样安排用的时间最少。

  第二题的第一问,40人全对,正确率是95.2%,这说明学生对烙饼的程序还是非常了解的,第二问只有一人是对的,正确率是2.3%,这说明3张饼的烙法学生不能理解。

  通过对前测的分析发现:“烙饼” 是学生熟悉而陌生的生活问题,而且“烙3张饼”的最优方法与生活实际是有距离的,给学生的理解带来了一定的困扰,是学生理解的难点。由于学生差异原因,少数学生能理解最优化的方法,多数学生尚需要用图示来帮助学生明白是怎么回事。基于这样的分析,制定了如下的教学目标。

  【教学目标】

  1、 通过动手操作、合作交流,自主概括出烙饼的最省时安排策略,计算烙多张饼的时间。

  2、 通过烙饼问题的研究,初步体会运筹方法的应用,认识到解决问题策略的多样性,形成寻求解决问题最优方案的意识。

  3、 感受数学在日常生活中的广泛应用,体会合理安排的重要性。

  教学重点:了解、体会优化思想

  教学难点:寻找合理、快捷的烙三张饼、多张饼方法

  【评价设计】

  1、 通过探究烙1、2、3、4、5、6……饼需要的最少时间,总结规律,检测目标1、目标2的达成。

  2、 通过拓展延伸、实践应用检测目标2、目标3的达成。

  【教学流程】

  课前游戏、蕴伏策略

  “妙传情报”游戏:采取什么方式能快速把情报内容传递给同伴?

  学生交流

  揭示:做事情需要以“智”取胜,这是一种对事情进行合理安排的智慧和策略。

  【设计意图:游戏导入,学生初步感受到做事情需要“注重方法”,合理安排很重要,渗透“优化”意识。】

  一、出示情境、提出问题

  本节课的智慧之旅就从烙饼开始。看似平常的烙饼中藏着什么数学问题呢?我们一起来看大屏幕。

  【课件】妈妈早晨要用平底锅为全家人烙饼,锅里每次最多能烙2张饼,烙一面(按一次算)需要2分钟。烙11张饼最少需要多长时间?

  从题中你发现了哪些重要的数学信息?你是怎样理解的?

  烙11张饼最少需要几分钟呢?(学生自由回答)

  面对学生的困惑引导学生思考解决问题的策略:复杂的问题可以从简单的问题开始。

  如果只烙一张饼,最少需要几分钟?

  如果烙两张最少需要几分钟呢?

  学生一般会出现两种方法,比较分析:你喜欢哪种方法?为什么?第一种费时间从哪里看出来?第二种省时从哪里体现?

  小结:两张同时烙是烙两张饼的“最优方法”。

  【设计意图:复杂的问题从简单的入手研究,体现了数学学习的一般方法。烙一张饼、两张饼意在明确烙的方法,并通过两张饼的不同烙法,初步体会优化思想。】

  二、实践探究、体验优化

  烙三张饼至少需要多长时间?小组合作,借助圆纸片来模拟演示。

  学生展示烙法。

  可能出现方法:

  1、两张同时烙、第三张单独烙。

  2、三张交替烙

  课件展示两种烙法。

  比较:哪种方法好?好在哪里?

  小结:充分利用锅的空间,三张饼交替烙是最优方法。

  闭上眼睛,把三张饼的最优方法再头脑中回放一遍。

  【设计意图:烙三张饼的最优方法是烙饼问题的关键,让学生演示烙的过程、电脑整理烙的过程、对比分析两种方法,既可以有效地帮助学生理清思路、深化认识,为后面的学习打下基础,又培养了学生的创新能力。】

  三、拓展延伸、寻找规律

  烙4张、5张饼……N张饼的最佳方法是什么?至少需要多长时间?小组合作探究。

  探究要求:

  1、从4张、5张饼的烙法中你发现了什么规律?

  2、将烙的次数、所用的最少时间填在表中,观察饼数、烙的次数和最少用时,他们中存在什么关系?

  3、你有什么疑问?

  小组活动。

  展示交流

  1、4张饼怎么烙?你联想到哪些张饼的饼也可以这样安排?发现了什么规律?

  小结:偶数可以转化成两张的烙法。

  2、5张饼怎么烙?你联想到哪些张饼的饼也可以这样安排?发现了什么规律?

  小结:奇数可以转化成两张同时烙和三张交替烙

  3、 N张呢?

  4、 观察表中的数据,他们之间有什么规律?同学们有什么疑问?

  应用:现在你知道妈妈烙11张饼怎样安排最省时?最少需要多少分钟吗?

  【设计意图:通过操作、观察总结出烙饼的张数与时间之间的内在联系,可以培养学生的观察能力和逻辑思维能力。计算方法的的理解帮助学生将实践操作与数学理论有机融合。】

  四、构建模型 实践应用

  我们借助对烙饼问题的研究来构建合理安排时间的模型,进行统筹安排的数学思考,以更好的解决生活问题。下面的问题你能借助 “烙饼问题”来思路解决么?

  思考:此题与“烙饼问题”有什么关联?题中的什么相当于烙饼问题中的什么?

  复印3张资料,每次最多放两张,两面都要复印,如果每一面需要3秒,你认为怎么样安排复印最合理?最少需要几秒?

  五、梳理思路 全课总结

  回顾本节课解决问题的过程,我们是怎样进行一步一步的研究的?学生自由交流。

  小结:烙饼如此,生活中和学习中的很多事情其实也是如此。当遇到复杂的问题,我们可以从简单的问题入手,当同一件事有不同的安排方法时,我们需要对比分析,寻找最合理的安排。

  数学文化:简要介绍统筹学。

  【设计意图:思想感悟与经验积累决定人的思维方式,而思想感悟与经验积累需要“感悟”与“转化”,通过回顾、反思等内在思考,帮助学生提升认识,将收获内化。】

  【课堂检测】

  1、 平底锅煎鱼:一只锅每次最多煎两条小黄鱼,煎1条鱼需要4分钟(正、反面各2分钟)。煎7条鱼最少需要多少时间?怎样煎?

  2、 一个电脑游戏,每局的时间是3分钟,可以单人玩,也可以双人玩。甲、乙、丙三人每人都想玩2局,至少要多少分钟?你是怎么安排的?

烙饼问题教学设计一等奖先学后教第 4 篇

教学目标:

  1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

  2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

  3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

  教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

  教学难点:寻找合理、快捷的烙饼方案。

  教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

  教学过程:

  一、预设情景,走进生活。

  师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

  生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

  生2:只需要5分钟,把5个鸡蛋一起放进锅里。

  师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

  ——板书:烙饼问题

  (设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

  二、围绕主题,探索新知。

  1、解读信息,理解烙饼规则。

  师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

  生:每次只能烙2张饼;两面都要烙;每面3分钟。

  师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

  2、观察法,探究烙2张饼的最优方法。

  师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

  生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

  师:如果要烙2张饼呢,最少需要几分钟?

  生1:1张饼要6分钟,烙2张饼就要12分钟。

  生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

  师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

  生:2张饼同时烙。

  师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

  3、动手操作,探究烙3张饼的最优方法。

  师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

  (1)学生尝试烙饼。(教师巡视并做个别指导)

  (2)汇报交流。(预计有18分钟、12分钟、9分钟)

  预设: ① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

  ② 先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

  师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

  ③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

  (3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

  (4)集体交流,对比择优。

  师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

  生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

  小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

  你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

  (设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  4、总结方法,探究规律

  (1)脱离学具,思考烙4张饼的最优方法

  师:如果要烙4张饼,怎样烙才能最节省时间?

  师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

  (2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

  生:先烙2个,再烙3个。

  师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

  (3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

  师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

  (4)发现规律。

  师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

  烙饼所用的最少时间与饼的张数有什么关系?

  生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

  先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

  师:“3”是什么?

  生:“3”是烙一面需要3分钟

  师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

  生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

  (设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

  三、全课总结

  今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号