当前位置:首页 > 教案教学设计 > 教学设计一等奖

等比列教学设计一等奖

日期:2022-04-03

这是等比列教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

等比列教学设计一等奖

等比列教学设计一等奖第 1 篇

一、教学目标:

  1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。

  2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、

  概括等逻辑思维能力。

  3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。

  二、重点:等比数列的性质及其应用。

  难点:等比数列的性质应用。

  三、教学过程。

  同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。

  数列名称 等差数列 等比数列

  定义 一个数列,若从第二项起 每一项减去前一项之差都是同一个常数,则这个数列是等差数列。 一个数列,若从第二项起 每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。

  定义表达式 an-an-1=d (n≥2)

  (q≠0)

  通项公式证明过程及方法

  an-an-1=d; an-1-an-2=d,

  …a2-a1=d

  an-an-1+ an-1-an-2+…+a2-a1=(n-1)d

  an=a1+(n-1)*d

  累加法 ; …….

  an=a1q n-1

  累乘法

  通项公式 an=a1+(n-1)*d an=a1q n-1

  多媒体投影(总结规律)

  数列名称 等差数列 等比数列

  定 义 等比数列用“比”代替了等差数列中的“差”

  定 义

  表

  达 式 an-an-1=d (n≥2)

  通项公式证明

  迭加法 迭乘法

  通 项 公 式

  加-乘

  乘—乘方

  通过观察,同学们发现:

  等差数列中的 减法、加法、乘法,

  等比数列中升级为 除法、乘法、乘方.

  四、探究活动。

  探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。

  练习1 在等差数列{an}中,a2= -2,d=2,求a4=_____..(用一个公式计算) 解:a4= a2+(n-2)d=-2+(4-2)*2=2

  等差数列的性质1: 在等差数列{an}中, a n=am+(n-m)d.

  猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am*qn-m

  性质证明 右边= am*qn-m= a1qm-1qn-m= a1qn-1=an=左边

  应用 在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2*22=-8

  探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。

  练习2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为 . 解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180

  等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq

  猜想等比数列的性质2 在等比数列{an} 中,若m+n=s+t则am*an=as*at 特别的,当m=n时,an2=ap*aq

  性质证明 右边=am*an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as*at=左边 证明的方向:一般来说,由繁到简

  应用 在等比数列{an}若an>0,a2a4+2a3a5+a4a6=36,则a3+a5=_____. 解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36

  由于an>0,a3+a5>0,a3+a5=6

  探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。

  练习3 在等差数列{an}中,a30=10,a45=90,a60=_____. 解:a60=2* a45- a30=2×90-10=170

  等差数列的性质3: 若an-k,an,an+k是等差数列{an}中的三项, 则这些项构成新的等差数列,且2an=an-k+an+k

  an即时an-k,an,an+k的等差中项

  猜想等比数列的性质3 若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且an2=an-k*an+k

  an即时an-k,an,an+k的.等比中项

  性质证明 右边=an-k*an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1) 2t=an2左边 证明的方向:由繁到简

  应用 在等比数列 {an}中a30=10,a45=90,a60=_____.

  解:a60= = =810

  应用 等比数列{an}中,a15=10, a45=90,a60=________. 解:

  a30= = = 30

  A60=

  探究活动4:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习4;等差数列的性质4;猜想等比数列的性质4;性质证明。

  练习4 设数列{an} 、{ bn} 都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_____. 解:a5+b5=2(a3+b3)-(a1+b1)=2*21-7=35

  等差数列的性质4: 设数列{an} 、{ bn} 是公差分别为d1、d2的等差数列,则数列{an+bn}是公差d1+d2的等差数列 两个项数相同的等差数列的和任然是等差数列

  猜想等比数列的性质4 设数列{an} 、{ bn} 是公比分别为q1、q2的等比数列,则数列{an*bn}是公比为q1q2的等比数列 两个项数相同的等比数列的和比一定是等比数列,两个项数相同的等比数列的积任然是等比数列。

  性质证明 证明:设数列{an}的首项是a1,公比为q1; {bn}的首项为b1,公比为q2,设cn=anbn那么数列{anbn} 的第n项与第n+1项分别为:

  应用 设数列{an} 、{ bn} 都是等比数列,若a1b1=7,a3b3=21,则a5b5=_____. 解:由题意可知{anbn}是等比数列,a3b3是a1b1;a5b5的等比中项。

  由(a3b3)2= a1b1* a5b5 212= 7* a5b5 a5b5=63

  (四个探究活动的设计充分尊重学生的主体地位,以学生的自主学习,自主探究为主题,以教师的指导为辅,开展教学活动)

  五、等比数列具有的单调性

  (1)q<0,等比数列为 摆动 数列, 不具有 单调性

  (2)q>0(举例探讨并填表)

  a1 a1>0 a1<0

  q的范围 0 q=1 q>1 0 q=1 q>1

  {an}的单调性 单调递减 不具有单调性 单调递增 单调递增 不具有单调性 单调递减

  让学生举例说明,并查验有多少学生填对。(真确评价)

  六、课堂练习:

  1、已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于( ).

  A. B.7 C.6 D.

  解析:由已知得a32=5, a82=10,

  ∴a4a5a6=a53= = =5 .

  答案:A

  2、已知数列1,a1,a2,4是等比数列,则a1a2= .

  答案:4

  3、 +1与 -1两数的等比中项是( ).

  A.1 B.-1 C. D.±1

  解析:根据等比中项的定义式去求。答案:选D

  4、已知等比数列{an}的公比为正数,且a3a9=2 ,a2=1,则a1等于( ).

  A.2 B. C. D.

  解析:∵a3a9= =2 ,∴ =q2=2,∵q>0,∴q= .故a1= = = .

  答案:C

  5练习题:三个数成等比数列,它们的和等于14,

  它们的积等于64,求这三个数。

  分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.

  由类比思想的应用可得,若三个数成等比数列,则设这三个数

  为: 根据题意

  再由方程组可得:q=2 或

  既这三个数为2,4,8或8,4,2。

  七、小结

  本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。

  八、

  §3.1.2等比数列的性质及应用

  性质一:若{an}是公比为q的等比数列,则an=am*qn-m

  性质二:在等比数列{an} 中,若m+n=s+t则am*an=as*at

  性质三:若an-k,an,an+k是等比数列{an}中的三项,则这些

  项构成新的等比数列,且 an2=an-k*an+k

  性质四:设数列{an} 、{ bn} 是公比分别为q1、q2的等比

  数列,则数列{an*bn}是公比为q1q2的等比数列

  板书设计

  九、反思

等比列教学设计一等奖第 2 篇

一、教材分析:

  等比数列的前n项和是高中数学必修五第二章第3.3节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。

  二、教学目标

  根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:

  1.知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

  2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的能力,培养学生从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

  3.情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

  三、教学重点和难点

  重点:等比数列的前项和公式的推导及其简单应用。

  难点:等比数列的前项和公式的推导。

  重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。

  四、教法学法分析

  通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,

  五、教学过程

  (一)创设情境,引入新知

  从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?

  关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?

  (二)师生讨论、探究新知

  总结归纳:当q=1时,Sn=na1

  当q≠1时,

  公式说明:①对等比数列{an}而言,a1,an,Sn,n,q知三可求二②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;③错位相减的思想方法。

  (三)例题讲解,形成技能

  例1:等比数列{an}中,

  ①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

  ③已知a1=2,S3=26,求q。

  通过例题一,渗透知三求二的思想。

  练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。

  例2. 等比数列{an}中,已知a1=3,S3=9,求q,an。

  练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。

  通过练习得出等比数列前项和的一个性质:成等比数列。

  例3:(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。

  首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。

  思考:求和:1+a+a2+a3+…+an

  (四)课堂小结

  以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

  设计意图:以此培养学生的口头表达能力,归纳概括能力。

  六、板书设计

  略

  七、课后记

  本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中军设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。

等比列教学设计一等奖第 3 篇

一、复习导入:(1)等差数列的定义;

(2)等差数列的通项公式;

(3)计算公差d的方法;

(4)等差中项的定义及公式.

二、实践操作:学生动手操作:把一张纸连续对折5次,试写出每次对折后纸的层数.通过学生动手操作可得折纸的层数是2,4,8,16,32,让学生思考对折12次后纸张有4096层,一张普通纸张的厚度约为0.1毫米,那么对折12以后纸张高度为4.096米,大概平房那么高。

通过动手实践,让学生直观感受等比数列。

三、新课讲授:

1.等比数列的定义

一般地,如果一个数列从第2项起,每一项与它前一项的比都等于同一个常数,则这个数列叫做等比数列,这个常数就叫做等比数列的公比.公比通常用字母“q”表示.

教师引导学生类比学习等差数列与等比数列的概念学习。引导学生尝试类比学习的方法,培养学生自主学习的能力。

练习一、抢答:下列数列是否为等比数列?

① 8,16,32,64,128,256,…;

教师分析并强调:求公比q一定要用后项除以前项,而不能用前项除以后项;

② 1,1,1,1,1,1,1,…;

教师分析并强调:q= 1时,{an}为常数列.

③ 243,81,27,9,3,1…;

教师分析并强调:公比可以是分数

④ 16,8,4,2,0,-2,…;

教师分析并强调:等比数列中,各项和公比均不为0;

⑤ 1,-1,1,-1,1,-1,1,…;

教师举例并强调:-1,1,-1,1,-1,1,…;与题目中数列公比相同,但由于首相不同,所以是两个不相同的数列。

⑥ 1,-10,100,-1000,….

教师强调:判断等比数列的标准后一项与前一项的比值是否是同一个常数。

2.等比数列的通项公式 

首项是a1,公比是q的等比数列{an}的通项公式可以表示为

an = a1 q n-1.

根据这个通项公式,只要已知首项a1和公比q,便可求得等比数列的任意项an.

事实上,等比数列的通项公式中共有四个变量,知道其中三个,便可求出第四个.

练习二 

已知一个等比数列的首项为1,公比为-1,求这个数列的第9项.

学生自行解决,并请同学上台讲解。

教师总结题型:已知首相、公比和项数求第n项,直接套用公式。

练习三

求下列等比数列的第4项和第8项:

(1)5,-15,45,…;

(2)1.2,2.4,4.8,…;

教师引导学生总结:看出首项,算出公比,写出通项,得出所求。

例1 已知一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.

教师分析:已知数列第3项和第4项,可以用首项和公比表示已知项,从而得到含有a1

和q的等式,这就是应用方程的思想解决等比数列问题。

解 设这个数列的第一项是a1,公比是q,则

a1q2= 12, ①

a1q3= 18. ②

解①②所组成的方程组,得

q= ,a1 = ,a2 = a1q=× =8.

即这个数列的第1项是,第2项是8.

练习四、一个等比数列的第9项是,公比是-,求它的第1项.

2.一个等比数列的第2项是10,第3项是20,求它的第1项和第4项.

例2 将20,50,100三个数分别加上相同的常数,使这三个数依次成等比数列,求它的公比q.

学生自主应用方程思想解决问题

3.等比中项的定义

在2与8之间插入一个数4,那么2,4,8成等比数列.

一般地,如果a,G,b成等比数列,那么G 叫做a与b的等比中项.

教师引导类比等差中项,学生自主归纳总结等比中项概念。

4. 等比中项公式

如果G是a与b的等比中项,则G2=ab

容易看出,一个等比数列从第2项起,每一项(有穷等比数列的末项除外)都是它的前一项与后一项的等比中项.

教师引导学生找到等比中项与等差中项的联系区别,从而加深已学概念的理解的基础上,进行知识的拓展,延续知识的承接性。

练习五

求下列各组数的等比中项:

(1)2,18;

   (2)16,4.

四、课堂小结

1.等比数列的定义.

2.等比数列的通项公式.

3.等比中项的定义及公式.

4.等比数列定义与通项公式的应用.

五、当堂练习

1、求下列等比数列的第4项和第8项:

(1),,,…;

(2),1,,….

2、一个等比数列的第2项是10,第3项是20,求它的第1项和第4项.

六、课后作业

必写作业:课后2、4题

选写作业:课后5、6题

等比列教学设计一等奖第 4 篇

 【教学目标】

  知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。

  能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。

  情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。

  【教学重点】

  等比数列定义的归纳及运用。

  【教学难点】

  正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列

  【教学手段】

  多媒体辅助教学

  【教学方法】

  启发式和讨论式相结合,类比教学.

  【课前准备】

  制作多媒体课件,准备一张白纸,游标卡尺。

  【教学过程】

  【导入】

  复习回顾:等差数列的定义。

  创设问题情境,三个实例激发学生学习兴趣。

  1. 利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0)

  2. 一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列 15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。

  3. 复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.

  学生探究三个数列的共同点,引出等比数列的定义。

  【新课讲授】

  由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。

  等差数列:

  一般地,如果一个数列从第二项起,每一项减去它的前一项所得的.差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式: an+1-an=d

  等比数列:

  一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式: an?1

  an?q

  知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实

  例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。

  在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.

  例题一

  判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.

  (1) 1, 4, 16, 32.

  (2) 0, 2, 4, 6, 8.

  (3) 1,-10,100,-1000,10000.

  (4) 81, 27, 9, 3, 1.

  (5) a, a, a, a, a.

  讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利

  用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。 例题二

  求出下列等比数列中的未知项:

  (1) 2, a, 8;

  (2) -4, b, c, ?;

  ? 已知数列 2, x, d, y,8.是等比数列

  ①证明数列2, d, 8.仍是等比数列.

  ②求未知项d.

  通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,

  也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。

  练习

  判断下列数列是等差数列还是等比数列?

  (1) 22 , 2 , 1 , 2-1, 2-2 .

  (2) 3 , 34 , 37, 310 .

  引申:已知数列{an}是等差数列,而bn?2n

  证明数列{bn}是等比数列.

  由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数

  列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。

  【课堂小结】

  由学生通过一堂课的学习,做个简单的归纳小结。

  1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断

  2.等比数列公比q≠0,任意一项都不为零.

  3.学习等比数列可以对照等差数列类比做研究.

  【作业】

  1.书p48. No.1,2; a

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号