日期:2022-03-27
这是圆柱体积一等奖教学设计,是优秀的教学设计一等奖文章,供老师家长们参考学习。
学情分析:
根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:
圆柱体体积的计算
教学难点:
圆柱体体积公式的推导
教学用具:
圆柱体学具、课件
教学过程:
一、复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、探索新知
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。(有条件的可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:
(板书:V=Sh)
(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
4.教学算一算
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)
教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
三、巩固练习练习册里的练习题
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh
【案例背景】:
圆柱的体积教学案例与反思
小学数学教学必须从抽象、枯燥的形式中解放出来,走出金字塔,走向生活,使数学生活化。如何在新课程的理念的指导下,改革小学数学课堂教学,把先进的教学理念融入到日常的教学行为之中,已日益成为广大小学数学教师关住和探讨的热点问题,于是在《数学课程标准》新理念的引领下,我在6月教学北师大六年级下册《圆柱的体积》一课时,进行了一些尝试,恳求同行赐教。
【案例主题】:
《数学课程标准》指出“数学教学要让学生经历知识的形成过程”;“通过义务教育阶段的学习,学生能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其它学科学习中的问题,增加应用数学的意识”。不难发现新课标注重的不只是让学生掌握学习中的结论,更关注的是他们个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值.
【案例描述】:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。我在教学圆柱体的体积时,先提出如下问题让学生预习:①用什么办法推导圆柱体的体积公式?②如果把圆柱体转化为长主体,什么变了?什么没有变?然后让学生拿出先准备好的萝卜和小刀,让学生动手切一切,拼一拼,想一想,若失败了,再试,反复试,并以四人小组为单位进行探索、讨论、总结。最后重点回答上面的第二问。学生经过亲自切拼,亲身体验,激烈的争论,共同探索出了长方体和圆柱体的内在联系,得出不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长等。不仅如此,学生还能轻而易举地说出增加的表面积就是长方体左、右两面的面积,也就是圆柱体底面半径与高之积的2倍!这样直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。
本文就这节课的教学,谈谈我的一点实践与思考。
教学片断一:情境引入,感性认识
师:(学生拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听.
生:捏成长方体或正方体,量出长、宽、高,计算.
师:你还能捏成我们学过的其他图形吗?
(学生操作:捏成圆柱)
师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)
师:你发现了什么?
生:形状变,体积不变.
师:如果老师要求校门口的水泥柱体积,怎么办呢?
生:万变之中求不变.
师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?
生:圆切割拼成一个近似的长师:你能帮老师求出这个圆柱(老师出示圆柱体积教具)的体积吗?
(学生主动探究,“创造”出圆柱体体积公式。即教师把握住一个“捏”字,创设了一个操作思考的启发情境,它包含了数学的“化归”思想,激活了学生头脑中已有的数学思维,为新知教学提供了直观感性认识,为学生“做数学”作好了思维铺垫。)
教学片断二:矛盾冲突,诱发愿望
圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?(一般学生会回答:把水倒入长方体容器中,再测量计算。)要求圆柱体铁块的体积呢?(聪明的学生也能够说出:把它浸入水中,求出排出水的体积。)要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。这样由浅入深不断施问的学习问题,诱发了学生主动参与问题解决的过程,激发了学生产生探求一种更广泛的方法来解决圆柱体体积的欲望。
教学片断三:自主探究,迁移转化
(1)有同学既把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!
让学生互相讨论,思考应如何转化,然后组织全班汇报(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了)
(2)操作:学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。
(3)感知:将圆柱体模具(已切好)当场演示。
①让一位学生把切割好的一半拿上又叉开;
②另一位学生将切割好的另一半拼合上去;
③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。以四人小组为单位进行探索、讨论、总结。
(学生经过亲自切拼,亲身体验,激烈的争论,共同探索出了长方体和圆柱体的内在联系,得出不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长等。不仅如此,学生还能轻而易举地说出增加的表面积就是长方体左、右两面的面积,也就是圆柱体底面半径与高之积的2倍! 学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。)
(4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。
(5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?
(6)汇报:你发现了什么?
圆柱→近似长方体
①体积相等
②底面积相等
③高相等
④表面积不相等,
⑤概括总结:a、让学生试着总结公式;
b、老师在学生总结的基础上用出示:
长方体的体积=底面积×高
↓ ↓ ↓
圆 柱 体 的 体 积 =底面积×高
引导学生用字母表示计算公式:V=Sh
(在新课探究中,先让学生通过复习旧知识,在观察中理解,在活动中体验,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
底面积(㎡) 高(m) 圆柱体积(m3)
4 3
5 6
9 2
(设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的`掌握本课重点,)
教学片断四:运用新知,尝试解答
例4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
(1)尝试:让学生理解题意,自己尝试解答。
(2)展示:
(3)讲评:
组织学生讨论,找出错因,明确:
①必须先统一单位后再列式计算。
②计算体积应用体积单位。
(4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面积直径d和高h呢?
让学生独立思考,写出计算公式,再相互交流。
例5一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米。这个水桶的容积是多少立方分米?
学生独立完成,集体讲评订正。
(让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
教学片断五:联系实际,实践运用
1. 一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2. 一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
(安排了密切联系生活实际的习题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
【实践与思考】:
一、创设启发情境,激活思维源泉
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,启发学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。 激活学生的思维,那么创设启发情境是必由之路。教师应根据学生、教材、教法、生活的特点,利用已有知识经验,在组织学生实践活动中,有机构建知识发展的情境,激活思维的愿望,使学生以积极的心态大胆实践,“创造”性地解决新知识、新问题。例如,《圆柱体积》的教学,圆柱形体的变化,延用长方体体积推导方式的不确定性,学生解决圆柱体积公式遇到了瓶颈。 激活学生对圆柱体积和长方体体积本质联系的认识是引导学生探索体积计算公式的关键。
二、鼓励独立思考,诱发自主探索
同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用“你有什么发现?”“你是怎么想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学。
三、展示个性思维,激发思维个性
学者波利亚指出,“学习任何知识的最佳途径是由自己去发现,因为这种发现最深、也最容易掌握其中的规律和性质”。 因此,我们在教学中必须充分注意激发学生的思维个性和积极性,使学生在发现中学习,在学习中发现,使学习成为一种享受。
在新课探究中,学生经过亲自切拼,亲身体验,激烈的争论,共同探索出了长方体和圆柱体的内在联系,得出不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长等。不仅如此,学生还能轻而易举地说出增加的表面积就是长方体左、右两面的面积,也就是圆柱体底面半径与高之积的2倍! 在观察中理解,在活动中体验,在比较中归纳,通过这些措施可以使学生在发现中学习,在学习中发现,确实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。
四、渗透思维方法,催化数学思想
数学思想是指在具体的数学认识过程中体现出的带有普遍意义的观点,这些观点具有相对的稳定性。 教学中,指导培养学生解决问题的策略和方法,并加以运用和巩固,形成某种数学思想,就能为学生未来思考、解决其他纷繁的实际问题提供思想支撑,有助于学生从“学会”向“会学”的境界迈进。
学生主动探究,“创造”出圆柱体体积公式。即教师把握住一个“捏”字,创设了一个操作思考的启发情境,它包含了数学的“化归”思想,激活了学生头脑中已有的数学思维,为新知教学提供了直观感性认识。利用迁移规律探究新课,为学生创设良好的学习情境。探索和解决问题,体验转化及极限的思想方法。学会由未知向已知转化的一种学习方法。也就是向学生渗透知识间“相互转化”的辩证唯物主义思想。
总之,教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。
【困惑】:
1、学生所处的社区、家庭情况不同,原先的认识水平和生活经验积累不同,应允许学生在今后的继续观察、探索中,进一步完善认识结构。
2、处理推导过程有点不到位,如果有多组圆柱体拼的模型,让全体学生都有操作,探究的机会会更好些。
3、如何使学生爱评价、会评价?
教学内容:
人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、知识技能
结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:
1、合作探究学习为主要的学习方式。
2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。
3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。
教具准备:
圆柱的体积公式演示课件水槽水体积不同的圆柱体直尺细绳计算器。
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱C和圆柱D的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱C放入水中,验证圆柱C的体积。
方案二:将学具中已分成若干分扇形块的圆柱D拆拼成新的形体,计算新形体的体积,验证圆柱D的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh(设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
2、巩固反馈
填表
底面积(㎡)高(m)圆柱体积(m3)
63
0.58
82
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)
5、拓展练习
(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
四、全课小结:
谈谈这节课你有哪些收获。
教学目标
1.1知识与技能:
(1)、运用迁移规律,引导学生借助面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
(2)、会用圆柱的体积公式计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
1.2过程与方法:
引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
1.3情感态度与价值观:
借助实物演示,培养学生抽象、概括的思维能力。
教学重难点
2.1教学重点
圆柱体积计算公式的推导过程及其应用。
2.2教学难点
理解圆柱体积公式的推导过程。
教学工具
多媒体课件
教学过程
一、复习提问
1、怎样求长方体和正方体的体积?
【生】长方体体积=长×宽×高
正方体体积=棱长×棱长×棱长
【师】谁来说说他们怎么可以用一个公式来表示?
【生】直方体体积=底面积×高
【师】真聪明,那我们接下来来看题目
【生】解:长方体体积=底面积×高
=0.06×5
=0.3m3
2、一块正方体石料,一个面的面积是36dm2,这块石料的体积是多少立方分米?
【生】
二、探求新知
【师】同学们现在会计算长方体和正方体的图形的体积。圆柱的体积怎样计算呢?能不能将圆柱转化成我们学过的立体图形,计算出它的体积呢?
【师】同学们想不出来没有关系,我们先来看一看圆面积是怎么推出来的呢?
【师】现在同学们能想到了吗?请同学们以小组为单位讨论一下,并将你讨论的结果拿到实物投影仪上。
【生】(小组讨论,交流,老师总结)
【师】把拼成的长方体与原来的圆柱比较,你能发现什么?
【生】长方体的底面积等于圆柱的底面积。长方体的高等于圆柱的高。
【生】长方体的体积与圆柱的体积相等。
【师】
三、知识运用
【师】同学们,你们现在知道了怎么样求圆柱的体积,那么让我们实际来求一下吧。
[例6]下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测量得到的。)
【师】同学们做得非常好,下面请同学们做一做。
1.一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?
【生】75×90=6750(cm3)
答:它的体积是168750px3。
2.小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量底面直径是8cm,高是15cm。如果两人游玩期间要喝1L水,带这杯水够喝吗?
【生】保温杯的底面积:3.14×(8÷2)2
=3.14×42
=3.14×16
=50.24(cm2)
保温杯的容积:50.24×15
=753.6(cm?)
=0.7536(L)
答:因为0.7536小于1,所以带这杯水不够喝。
3.一个圆柱形粮囤,从里面量得底面半径是1.5m,高2m。如果每立方米玉米约重750kg,这个粮囤能装多少吨玉米?
【生】粮囤的容积:3.14×1.5?×2
=3.14×2.25×2
=7.065×2
=14.13(m?)
粮囤所装玉米:14.13×750÷1000
=10597.5÷1000
=10.5975(吨)
答:这个粮囤能装10.5975吨。
4.学校建了两个同样大小的圆柱形花坛。花坛的底面内直径为3m,高为0.8m。如果里面填土的高度是0.5m,两个花坛中共需要填土多少立方米?
【生】花坛的底面积:3.14×(3÷2)2
=3.14×1.5?
=3.14×2.25
=7.065(m2)
两个花坛的体积:7.065×0.5×2
=3.5325×2
=7.065(m?)
答:两个花坛中共需要填土7.065立方米。
课堂练习
1、判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。(×)
(2)圆柱体的高越长,它的体积越大。(×)
(3)圆柱体的体积与长方体的体积相等。(×)
(4)圆柱体的底面直径和高可以相等。(√)
2、求下面圆柱的体积。(只列式不计算)
(1)底面积24平方厘米,高12厘米。(2)底面半径2厘米,高5厘米。
(1)24×12(2)3.14×5×22
3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的.)
解:先要计算出杯子的容积.
杯子的底面积:3.14×(8÷2)
=3.14×4
=3.14×16
=50.24(c㎡)
杯子的容积:50.24×10
=502.4(ml)
502.4ml>498ml
答:这个杯子能装下这袋奶.
4、一个圆柱形粮囤,从里面量得底面半径是1.5m,高2m。如果每立方米玉米约重750kg,这个粮囤能装多少吨玉米?
1.52×3.14×2×750
=2.25×3.14×2×750
=10597.5(kg)
10597.5kg=10.5975(t)
答:这个粮囤能装10.5975t玉米。
5、一个沙堆23.55m3,用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?
2cm=0.02m
23.55÷(10×0.02)=117.75(m)
答:能铺117.75m。
6、学校要在教学区和操场之间修一道围墙,原计划用土石35m3。后来多开了一个月亮门,减少了土石的用量。现在用了多少立方米土石?
35-(2÷2)2×3.14×0.25=34.215(m3)
答:现在用了34.215m3土石。
7、明明家里来了两位小客人,妈妈冲了800mL果汁。如果用右图中的玻璃杯喝果汁,明明和客人每人一杯够吗?
(6÷2)2×3.14×11×3=9×3.14×11×3=932.58(mL)
因为932.58mL>800mL,所以不够。
8、两个底面积相等的圆柱,一个高为4.5dm,体积为81dm3。另一个高为3dm,它的体积是多少?
81÷4.5×3=54(dm3)
答:它的体积是54dm3。
9、一块蜂窝煤大约需要用煤多少立方分米?(得数保留整数。)
10*.下面是一根钢管,求它所用钢材的体积。(图中单位:cm)
[(10÷2)2-(8÷2)2]×3.14×80
=9×3.14×80
=2260.8(cm3)
答:所用钢材的体积是2260.8cm3。
课后小结
【师】今天你学到了什么?有什么收获?能把你的收获说一说吗?
【生】我学到了:圆柱体的体积:V=πr?h
【生】直柱体的体积=底面积×高
【生】V=sh
课后习题
作业:第26页做一做,第2题。
第28页练习五,第2题、第6题。
板书
第三章圆柱和圆锥第3节圆柱的体积
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号