日期:2022-03-15
这是鸽巢原理教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。
【教学内容】
六年级数学《鸽巢原理》教学设计
人教版小学数学六年级下册《数学广角--抽屉原理》。
【学情分析】
抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。
1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。
【教学方法】
1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。
2. 适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
3.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”→哪是“抽屉”→ 平均分 →商+1
4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。
5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。
【教学目标】
知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形
成比较抽象的数学思维。
情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。
【教学难点】理解抽屉原理,并对一些简单实际问题加以“模型化”。
【教具、学具准备】学生:每组5根小棒、4个杯子;课件
【教学过程】
一、联系生活,激趣导入
用一副牌展示“抽屉原理”。 (师生合作完成魔术)
师:同学们喜欢魔术吗?今天老师客串一下魔术表演,想见识见识吗?请全班同当老师的助手,每一个小组有一副牌,大家知道一副扑克牌有54张去掉两张王牌,剩52张,现在用它变一个魔术。这个魔术的名字叫“猜花色”。在组长的组织下每人随意抽五张牌先反扣在桌上。我猜,每位同学的手中至少有两张花色是相同的。是这样的吗?见证奇迹的时刻到了。请翻牌看看,老师猜得准么? 生:猜对了。
生:猜对了,给点掌声吧。老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理----抽屉原理(板书课题)相信你们认真学习后,会明白的。
(设计意图: 老师通过一个魔术展示了在生活里 “抽屉原理”问题中的一种,勾起了学生对这个魔术很好奇心,为原本枯燥的数学课注入了活力。)
师:看看这节课的学习目标。(指名读一读)
(设计意图: 建立明确的目标,就会引起师生注意的集中性和指向性,引起对某类知识,某种能力的强烈注意。就能在最短的时间,最省力地完成“三个维度”的目标,最有效的'提高教学质量。)
二、动手实验、 探究新知
师:为研究这个原理,老师为大家准备了什么?
生:小棒和杯子(板书:小棒、杯子)
师:那我们今天就用小棒和杯子做几个有趣的数学实验来研究这个原理。
(一)第一步:研究4根小棒放入3个杯子中的现象。
1、请看大屏幕:
师:把4根小棒放进3个杯子里,请小组的同学摆摆看,在动手之前请看活动要求:
①4人为一组摆一摆,要求将小棒全部放进去,允许某个杯子空着。②边摆边记录下来,(记录时:可以用1 表示小棒,用 0 表示杯子(画一画)看看一共有几种摆法?
师补充:每个组要认真记录不同摆法。希望每个小组分工合作愉快,开始
2.汇报展示
要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:
师:大部分学生都摆完了,谁来说说,你们是怎么摆的?
学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:
4 0 03 1 0
2 2 02 1 1
(引导学生明确虽然摆放的顺序不一样,但是同一种放法)
师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。
师:还有别的放法吗?
生:没有了。
(3)引导观察,得出结论。
引导学生观察4种方法,从而得出:总有一个杯子里面至少有2根小棒。
师:是的,这4种放法,不管怎么放,你有什么发现?)
1组:(可能会出现不同发现)
2组:我们发现不管怎么放,总会有一个小杯子里面至少有2根小棒。强调至少!总有
师:说啥?再说一遍。
生:
师:还有谁发现了什么?
生:
(设计意图:这个环节鼓励每个小组都说出自己的看法,因为学生思维能力的不同,得出的结论也就不同。只有通过多种思维的碰撞,学生的逻辑思维能力、解决问题的能力才能提高,对抽屉原理的认识才会更加深刻。)
师:再次观察四种方法,哪种方法能直接得到这个结论。
这种分法,实际就是先怎么分的?(引导平均分)
师:关于平均分有没有问题?我有一个问题,为什么用平均分这一种方法,就能得出总有一个杯子里的至少有2根小棒这个结论。
(二)第二步:研究5根小棒放入4个杯子中的现象。
1、课件出示:5根小棒放进4个杯子里你感觉会出现什么情况。
师:再往下继续研究,5根小棒放在4个小杯子里你感觉会出现什么情况,
生猜测:5根小棒放在4个小杯子,不管怎么放,肯定有一个杯子里至少有2根小棒。
师:对不对需要实验验证,我们还要像刚才那样一一把所有摆法都列举出来吗?用什么方法操作验证这个结论对错就可以了。
生:用平均分的方法就可以了。
师:咱们试试看,小组合作交流,用这种平均分的方法操作验证,并像黑板上那样记录在学案里。
2、展示摆法,引导观察发现:
师:哪一个小组愿意展示分享一下?
生:5根,每个小杯子放一根,剩下的一根放在其中的一个小杯子。(实际演示一下)
师:谁和他的分法一样的,这种分法,实际就是先怎么分的?(板书:平均分)
课件演示
师:,既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗?
生:5÷4=1??1
师:能解释算式里每个数的意义吗?
生:5表示小棒数,4表示杯子是,商1表示平均每个杯子放进1根小棒,余数1表示还剩1根小棒。
师小结:要想发现存在着“总有一个杯子里一定至少有2根”,先平均分,余下1根,不管放在那个杯子里,一定会出现“总有一个杯子里一定至少有2根”。 )
3、学以致用---照这样的思路,继续往前走:
课件出示:把7根小棒放进6个小杯子里,总有一个杯子里至少有( )根,。
100根小棒放进99个小杯子里,总有一个杯子里至少有( )
根。
师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(小棒的数量与杯子的数量有什么关系?))还要操作验证吗?说说你的想法。
学生独立解决以上问题,在展示汇报时学生要说明白解决问题的方法是什么。
4、引导学生知识点小结:
师:小棒数比杯子数多1,总有一个盒子至少放进的小棒数怎么算,你用谁加上谁就是我们想要结果?
一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。
一、情境导入,初步感知
兴趣是最好的老师。在导入新课时,我以四人一小组的形式玩“抢凳子”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
二、活动中恰当引导,建立模型
采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。
在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分”到各个鸽巢,看每个鸽巢能分到多少本书,剩下的书不管放到哪个鸽巢里,总有一个鸽巢比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。由于我提供的'数据比较小,为学生自主探究和自主发现“鸽巢原理”提供了很大的空间。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。
三、通过练习,解释应用
适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由”。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。
不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只鸽巢里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个鸽巢中?”这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。
一、单元教材分析:
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
二、单元三维目标导向:
1、知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。(2)理解知识的产生过程,受到历史唯物注意的教育。(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
三、单元教学重难点
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。 难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
四、单元学情分析
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将
这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的'学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
五、教法和学法
1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。
一、创设情境,巧设悬念
通过猜月份相同这个情境引入,一是使教师和学生进行自然的沟通交流;二是调动和激发学生学习的主动性和探究欲望;三是为今天的探究埋下伏笔,初步理解“至少”的含义。
二、合作探究,建立模型
引导学生从简单的情况开始研究,渗透“建模”思想。通过学生独立证明、小组交流、汇报展示,使学生相互学习解决问题的不同方法。通过说理,沟通比较不同的方法,让学生理解:为什么只研究一种方法(平均分的思路)就能断定一定有“至少2只笔放进同一个笔筒中”这个过程主要解决对“至少”、“总有”“平均分”这些词的.理解。再通过摆或假设法继续发现规律,在这个过程中抽象出算式,并在观察比较中全面概括、总结抽屉原理,建立起此类问题的模型。
三、鸽巢原理的由来
数学小知识鸽巢原理、抽屉原理的由来,采用了微课的方式呈现,向学生介绍了德国数学家——“狄里克雷”和他的“抽屉原理”。使学生感受到我们本课所发现的规律和150多年前科学家发现的一模一样,增加探究的成就感。同时了解到鸽巢原理最初的模型和在生活中的广泛应用,增加一些数学文化气息。
四、解决问题
通过举例、解决问题,开阔学生视野,回归课前,回归生活,通过不同类型题的设计,让学生灵活运用此原理解释生活现象。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号