当前位置:首页 > 教案教学设计 > 教学设计一等奖

比例的应用教学设计一等奖

日期:2022-03-09

这是比例的应用教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

比例的应用教学设计一等奖

比例的应用教学设计一等奖第 1 篇

 教学目标:

  1、能正确的判断应用题中涉及到的量成什么比例关系。

  2、能正确的用比例的知识解答比较简单的应用题。

  3、培养学生的分析、判断和推理能力。

  教学重点:

  正确的判断应用题中的数量关系之间存在着什么样的比例关系。

  教训难点:

  能根据正比例、反比例的意义列出含有未知数的等式。

  教学过程:

  一、实际操作,引入新知识。

  (1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

  (3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (4)你是怎样算的,可以列出式子吗?

  二、教学例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

  1、指导分析,理解题意。

  2、学生自己想办法解答。

  3、师生探究用比例的知识解答。

  A、这道题中涉及到的量有哪些?

  B、哪种量一定(不变)?从哪里知道的?

  C、路程和时间成什么比例关系?判断的依据是什么?

  D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

  2小时和140千米相对应,5小时和X千米相对

  应,即可以列出比例:140 :2=X :5

  E、学生列式并解答。

  F、说说怎样检验我们的计算结果呢?

  4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

  一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

  学生自己解答,老师及时收集和处理反馈信息。

  三、教学例2

  一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

  1、引导分析,理解题意,找到相关的量。

  2、准确判断它们成什么比例关系。

  3、学生解答,及时收集和处理反馈信息。

  比较例1、例2的异同。

  四、小结:

  用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

比例的应用教学设计一等奖第 2 篇

教学目标

  1.复习成正比例和反比例关系的量的意义。

  2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。

  3.进一步培养同学们分析、推理和判断等思维能力。

  教学重点和难点

  1、 判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件

  教学过程设计

  今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

  一、复习概念

  1、什么叫成正比例的量?它的关系式是什么?

  2、什么叫成反比例的量?它的关系式是什么?

  3、正反比例它们有什么相同和不同的地方?

  二、复习数量关系

  1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成

  什么比例?

  1.工作效率一定,工作时间和工作总量。( )

  2.每块砖的面积一定,砖的块数和铺地面积。( )

  3.挖一条水渠,参加的人数和所需要的时间。( )

  4.从甲地到乙地所需的时间和所行走的速度。( )

  5.时间一定,速度和距离。( )

  2.选择题:

  1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例

  2.步测一段距离,每步的平均长度和步数( )。

  ① 成正比例② 成反比例③ 不成比例

  3.比的后项一定,比的前项和比值()。

  ① 成正比例② 成反比例③ 不成比例

  4.C= πd 中,如果c一定,π和 d( )。

  ①成正比例 ② 成反比例③ 不成比例

  5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。

  ?40:15= 60: ② 40=15×60 ③ 60=15×40

  三、复习简单应用题

  例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

  A、题中涉及哪三种量?其中哪两种是相关联的量?

  B、哪一种量是一定的?你是怎么知道的?

  C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。

  2、总结 正 、反比例解比例应用题要抓的四个环节

  3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

  ①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  ②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

  ③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

  ④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  ⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?

  ⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

  四、 巩固练习

  1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

  解:设可装订本。

  (30+10)=500×30

  4 0=15000

  =15000

  =375

  答:可装订375本。

  2、比一比,想一想,每一组题中有什么不同, 你会列式吗?

  (1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

  (2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

  五、拓展延伸

  用正反两种比例解答:

  1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

  六、全课总结

  解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

  七、板书设计

  正反比例应用题

  =K(一定) X×Y=K(一定)

  X和Y成正比例关系。 X和Y成反比例关系。

  正y 、反比例解比例应用题要抓的四个环节

  第一、分析:可分四步。

  第一步:确定什么量是一定的。

  第二步:相依变化的量成什么比例。

  第三步:找准相对应的两个量的数。

  第四步:解方程(根据比例的基本性质)

  第二、设未知数为X,注意写明计量单位。

  第三、根据正反比例的意义列出方程。

比例的应用教学设计一等奖第 3 篇

教学目标:

  1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

  教学重点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  预习指导:

  一、自学教材。

  阅读教材第62~63页。

  二、检查学习。

  1.怎样两个量成正比例?

  2.完成"试一试"。

  教学准备:

  课件和口算题。

  教学过程:

  一、导入

  谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1 1.课件出示例1的表

  ⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

  ⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

  2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

  3.我们可以写出这么几组路程和对应时间的比。

  ⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

  ⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

  ⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  课件出示:路程和时间成正比例。

  ⑷现在你能完整地说一说表中路程和时间成什么关系吗?

  4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。

  ⑴课件出示"试一试"

  ⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

  课件出示表中的数据。

  ⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

  集体交流:

  ⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

  ⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

  小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

  ⑹你能完整地这样说给你的同桌听一听吗?

  ⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

  课件出示课题。

  ⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

  指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

  5.完成"练一练"

  ⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

  ⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

  小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

  三、练习

  1.完成练习十三第1题。

  请大家继续看课本66页第1题

  2.完成练习十三第2题

  ⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

  ⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的'比值都是三分之五,是一定的。

  3.完成练习十三第3题(课件出示题目)

  ⑴课件出示放大后的三个正方形、

  ⑵大家看一看,你是这样画的吗?

  ⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

  校对学生做的情况。

  ⑷请大家根据表中的数据讨论下面两个问题。

  ①正方形的周长与边长成正比例吗?为什么?

  ②正方形的面积与边长成正比例吗?为什么?

  四、总结。

  通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

  板书设计:

  正比例的意义

  路程和时间是两种相关联的量,

  时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

  我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

比例的应用教学设计一等奖第 4 篇

 教学目标

  1.使学生能正确判断应用题中涉及的量成什么比例关系.

  2.使学生能利用正、反比例的意义正确解答应用题.

  3.培养学生的判断推理能力和分析能力.

  教学重点

  使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.

  教学难点

  利用正反比例的意义正确列出等式.

  教学过程

  一、复习准备.(课件演示:比例的应用)

  (一)判断下面每题中的两种量成什么比例关系?

  1.速度一定,路程和时间.

  2.路程一定,速度和时间.

  3.单价一定,总价和数量.

  4.每小时耕地的公顷数一定,耕地的总公顷数和时间.

  5.全校学生做操,每行站的人数和站的行数.

  (二)引入新课

  我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.

  教师板书:比例的应用

  二、新授教学.

  (一)教学例1(课件演示:比例的应用)

  例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  1.学生利用以前的方法独立解答.

  140÷2×5

  =70×5

  =350(千米)

  2.利用比例的知识解答.

  (1)思考:这道题中涉及哪三种量?

  哪种量是一定的?你是怎样知道的?

  行驶的路程和时间成什么比例关系?

  教师板书:速度一定,路程和时间成正比例

  教师追问:两次行驶的路程和时间的什么相等?

  怎么列出等式?

  解:设甲乙两地间的公路长 千米.

  =

  2 =140×5

  =350

  答:两地之间的公路长350千米.

  3.怎样检验这道题做得是否正确?

  [1][2][3]下一页

  4.变式练习

  一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

  (二)教学例2(课件演示:比例的应用)

  例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?

  1.学生利用以前的方法独立解答.

  70×5÷4

  =350÷4

  =87.5(千米)

  2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

  这道题里的路程是一定的,_________和_________成_________比例.

  所以两次行驶的_________和_________的_________是相等的.

  3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

  4 =70×5

  =87.5

  答:每小时需要行驶87.5千米.

  4.变式练习

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?

  三、课堂小结.

  用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.

  四、课堂练习.(课件演示:比例的应用)

  (一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

  (二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

  (三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.

  1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

  2.王师傅4小时生产了200个零件,照这样计算,_______?

  五、课后作业.

  1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

  2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?

  上一页[1][2][3]下一页

  3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

  六、板书设计.

  教案点评:

  本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。

  在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。

  探究活动

  鱼池有多少条鱼?

  活动目的

  1.培养学生应用所学知识解决实际问题的能力.

  2.培养学生的判断推理能力和分析能力.

  活动形式

  以小组为单位讨论.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号