当前位置:首页 > 教案教学设计 > 教学设计一等奖

苏教版分数乘整数教学设计一等奖

日期:2022-02-28

这是苏教版分数乘整数教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

苏教版分数乘整数教学设计一等奖

苏教版分数乘整数教学设计一等奖第 1 篇

 教学目标

《分数乘整数》优秀教案设计

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学重点

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学难点

  引导学生总结分数乘整数的计算法则.

  教学过程

  一、设疑激趣

  (一)下面各题怎样列式?你是怎样想的.?

  5个12是多少?10个23是多少?25个70是多少?

  (概括:整数乘法表示求几个相同加数的和的简便运算)

  (二)计算下面各题,说说怎样算?

  + + = + + =

  说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

  同学之间交流想法: + + = = 3× ×3=

  ×3这个算式表示什么?为什么可以这样计算?

  教师板书: + + = ×3=

  二、自主探索(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  1.读题,说说 块是什么意思?

  2.根据已有的知识经验,自己列式计算

  三、交流、质疑

  (一)学生汇报,并说一说你是怎样想的?

  方法1: + + = = = (块)

  方法2: ×3= + + = = = = (块)

  (二)比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的.

  区别:一种方法是加法,另一种方法是乘法.

  教师板书: + + = ×3

  (三)为什么可以用乘法计算?

  加法表示3个 相加,因为加数相同,写成乘法更简便.

  (四) ×3表示什么?怎样计算?

  表示3个 的和是多少?

  + + = = = = ,用分子2乘3的积做分子,分母不变.

  (五)提示:为计算方便,能约分的要先约分,然后再乘.

  四、归纳、概括:

  (一)结合 = ×3= 和 + + = ×3= ,说一说一个分数乘整数表示什么?

  求几个相同加数的和的简便运算.

  (二)分数乘整数怎样计算?

  用分子和分母相乘的积做分子,分母不变

  五、巩固、发展

  (一)巩固意义

  1.改写算式

  + + + =( )×( )

  + + + + + + + =( )×( )

  2.只列式不计算:3个 是多少? 5个 是多少?

  (二)巩固法则

  1.计算(说一说怎样算)

  ×4 ×6 ×21 ×4 ×8

  思考:为什么先约分再相乘比较简便?

  2.应用题

  (1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

  (2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

  (三)对比练习

  1.一条路,每天修 千米,4天修多少千米?

  2.一条路,每天修全路的 ,4天修全路的几分之几?

  六、课后作业

  (一) 的3倍是多少? 的10倍是多少?

  (二)一个正方形的边长是 米,它的周长是多少米?

  (三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?

  七、板书设计

  分数乘整数

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

  例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  用加法算: + + = = = (块)

  用乘法算: ×3= + + = = = = (块)

  答:3人一共吃了 块.

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

苏教版分数乘整数教学设计一等奖第 2 篇

教学目标:冀教版分数乘整数优秀教学设计

  结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。

  理解分数乘整数的计算方法,会计算分数乘整数的乘法。

  体验用乘法解决连加问题的价值,激发学习新知识的愿望。

  教学重点:

  分数乘以整数的计算方法。

  教学难点:

  正确运用先约分,再相乘的方法进行计算。

  教学过程:

  一、复习铺垫

  1、让我们先来做几道口算题,你能直接口算出结果吗?

  出示:

  3/8 +1/8= 1/3+1/5= 7+9=

  1/4+1/4+1/4= 2/9 +2/9= 3+3+3+3+3+3=

  2、学生口答。

  3、最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3×5或5×3来计算。

  4、师小结:是啊,求几个相同加数的和的简便运算可以用乘法。

  质量问题

  教师口述问题,让学生用自己喜欢的方法解决。

  交流学生计算的`方法和结果。

  2/5+ 2/5+ 2/5 2/5 ×3

  =2+2+ 2/5 = 2*3/5

  =6/5( 千克 ) = 6/5( 千克 )

  5、比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的。

  区别:一种方法是加法,另一种方法是乘法。

  教师板书: 2/5+ 2/5+ 2/5= 2/5×3

  为什么可以用乘法计算?

  加法表示3个2/5相加,因为加数相同,写成乘法更简便.

  2/5×3表示什么?怎样计算?

  表示3个2/5的和是多少?

  2/5+2/5 + 2/5=2+2+2/5 =2*3/5 = 6/5 用分子2乘3的积做分子,分母不变.

  6、 提示:为计算方便,能约分的要先约分,然后再乘.

  二、归纳、概括:

  分数乘整数,用分子和分母相乘的积做分子,分母不变

  试一试

  让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

  练一练

  教学后记:

  这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法 上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成 ,进而从 ,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。

苏教版分数乘整数教学设计一等奖第 3 篇

教学内容:

分数和整数相乘的计算

教材分析:

在已学过的整数乘法的意义和分数加法计算的基础上,教学分数乘整数的意义和分数乘整数、整数乘分数的计算方法。

学情分析:

对于分数乘法的意义与整数乘法的意义的区别还有待进一步强调,学生在计算时会出现不先约分或与分母相乘的错误。

教学目标:

掌握分数和整数相乘可以表示求几个相同加数的和的简便运算的意义,能运用分数和整数相乘的计算法则进行有关计算,并且知道先约分后计算比较简便。

教学重点:

分数乘法的意义,分数与整数相乘的计算方法。

教学过程:

一、复习

1、把下列分数化成小数。

2/53/203/87/251/49/50

说说分母是20、25、50的分数化小数的简便化法。如何判断一个分数能不能化成有限小数。

2、说说约分的依据,再对下列分数进行约分。

3/124/816/2026/395/14

3、计算后再说说下列各组分数加法各有什么特点。

1/6+2/6+3/62/3+1/123/10+3/10+3/10

二、新授

1、分数乘整数的意义

(1)推导

由3/10+3/10+3/10,得出3个3/10相加,可以写成3/10×3,说说3/10×3所表示的意义。再由1/5+1/5+1/5+1/5可写成一个怎样的算式。说说1/5×4所表示的意义。

(2)讨论

1/5+2/7能不能也写成一个乘法算式,为什么?

(3)得出分数乘整数的意义。

表示求几个相同加数的和的简便运算。b/a×c即表示c个b/a的和是多少。

(4)练习

说说下列各式的意义

1/4×73/5×84/9×35/12×3

列出下列各题的算式

3个7/9的和是多少?4与3/8的和是多少?5/8的9倍是多少?

2、分数和整数相乘的计算方法

(1)推导

3/10+3/10+3/10=9/10,所以3/10×3=9/10.用小数乘法也可来验*,0.3×3=0.9。观察这个9/10是怎样得来的。再举例:2/5×7,由意义可得到2/5+2/5+2/5+2/5+2/5+2/5+2/5=2+2+2+2+2+2+2/5=2×7/5=14/5。再用小数乘法来进行验*0.4×7=2.8。

(2)猜测

说说下列各式的结果

1/5×43/5×26/7×33/17×54/15×4

(3)让学生说说分数和整数相乘的计算方法。得出b/a×c=b×c/a

(4)归纳总结出分数和整数相乘的计算方法。

由b/a×c=b×c/a,说说c×b/a等于什么。得出分数和整数相乘,只要用分数的分子和整数相乘的积作分子,分母不变。

(5)练习

3/5×4=()×()/5()×5/12=()×3/()

()/5×()=3×4/()3/()×()=()×7/16

(6)出示例1请学生尝试练习。

(7)明确先约分后计算,使计算简便。

注意a、在乘的情况下才能约分b、约分是在分子和分母之间进行的

三、巩固

1、课本第三页上的练一练。

2、课本第7页上的练习一第1、2题,第3题的第一行。注意一定要先约分后计算。

四、小结

1、分数乘整数的意义。b/a×c表示c个b/a是多少

2、分数和整数相乘的计算方法。b/a×c=c×b/a=b×c/a,用分数的分子和整数相乘的积作分子,分母不变。

3、注意先约分后计算可以使运算来得简便。分清4/5×5和4/5+5的区别。约分只有在乘法的情况下才能进行,而且是在分子和分母之间进行的。

五、作业

课本第7页练习一第3题的第二行,第4、5、6、7题

六、教后小记

学生对分数乘整数的意义掌握较好,但有部分学生对于c个b/a的和与c与b/a的和相混淆。计算的法则掌握情况也较好,不过有个别学生出现整数和分母约分,还有极个别学生把加法也用乘法的方法来计算。可以看出学生对于所学内容的理解运用还有待进一步的加强。

苏教版分数乘整数教学设计一等奖第 4 篇

一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。分数乘整数教案设计

  二、口算,感受分数乘整数的含义

  1、读出算式,并口算出结果:

  1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)

  2、感受分数乘整数的意义

  30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。

  三、尝试计算,归纳方法

  1、尝试计算。

  让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。

  2、自己选择练习

  自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。

  3、概括分数成整数的`计算方法

  让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。

  总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

  同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:

  一、给孩子鼓劲儿,让孩子看到希望

  告诉他们“我们这一学期数学课主要学习的都是有关分数的知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!

  二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭

  我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。

  三、理解分数乘法含义、尝试计算

  从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。

  同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号